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Abstract Model-Driven Engineering (MDE) is a soft-
ware engineering paradigm that proposes an active use of
models during the development process. This paradigm
is inherently type-centric, in the sense that models and
their manipulation are defined over the types of spe-
cific meta-models. This fact hinders the reuse of existing
MDE artefacts with other meta-models in new contexts,
even if all these meta-models share common character-
istics.

In order to increase the reuse opportunities of MDE
artefacts, we propose a paradigm shift from type-centric
to requirement-centric specifications by bringing gener-
icity into models, meta-models and model management
operations. For this purpose we introduce so called con-
cepts gathering structural and behavioural requirements
for models and meta-models. In this way, model man-
agement operations are defined over concepts, enabling
the application of the operations to any meta-model sat-
isfying the requirements imposed by the concept. Model
templates rely on concepts to define suitable interfaces,
hence enabling the definition of reusable model compo-
nents. Finally, similar to mixin layers, templates can be
defined at the meta-model level as well, in order to de-
fine languages in a modular way, as well as layers of
functionality to be plugged-in into other meta-models.

These ideas have been implemented in MetaDepth,
a multi-level meta-modelling tool that integrates action
languages from the Epsilon family for model manage-
ment and code generation.
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1 Introduction

Meta-modelling is a core technique in Model-Driven
Engineering (MDE), where it is used for language en-
gineering and domain modelling. The main approach
to meta-modelling is the OMG’s Meta-Object Facility
(MOF) [40], which proposes a strict meta-modelling ar-
chitecture enabling the definition and instantiation of
meta-models. MOF has a widespread use, and has been
partially implemented in the Eclipse Modeling Frame-
work (EMF) [46]. However, even though meta-modelling
is becoming increasingly used at industrial scale, current
approaches and tools are scarcely ever concerned with
scalability issues like reusability, abstraction, extendibil-
ity, modularity and compatibility (i.e. ease of composi-
tion) of models, meta-models and model management
operators, like transformations or code generators.

Generic programming [24,25,48] is a style of pro-
gramming in which types (typically classes) and func-
tions are written in terms of parametric types that can
be instantiated for specific types provided as parameters.
This approach promotes the abstraction of algorithms
and types by lifting their details from concrete examples
to their most abstract form [48]. The advantage is that
such a generic algorithm can be reused with any type
that fulfils the algorithm’s requirements. Hence, generic
programming shifts the emphasis from type-centric to
requirement-centric programming [37], enhancing gener-
ality and reusability.

In this paper we propose such a paradigm shift from
types to type requirements for MDE as well, by bring-
ing into MDE some of the successful, proven principles
of generic programming. The goal is to solve some of
the weaknesses of current approaches to meta-modelling,
transformation and behaviour specification concerning
reusability, modularity, genericity and extendibility. For
example, current approaches to behaviour specification
tend to define behaviour using the types of one particu-
lar meta-model. However, as generic programming often
does, one should be able to define generic behaviours
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applicable to several meta-models sharing some charac-
teristics and without resorting to intrusive mechanisms.
In this respect, we show that the use of generic concepts
specifying requirements from parametric types permits
defining behaviours in an abstract, non-intrusive way,
being applicable to families of unrelated meta-models.
We consider two kinds of concepts: structural and hy-
brid. The former express requirements on the structure
of models and meta-models, whereas the latter define re-
quired meta-model operations for specific meta-classes.

Models also suffer from an early concretization of de-
tails which hinders their reusability and compatibility.
The use of model templates allows delaying some details
on the model structure by defining model parameters.
In this way, a model template can be instantiated with
different parameters, allowing its reusability in different
situations, and enhancing its compatibility and modular-
ity. The expected requirements for those parameters are
expressed through concepts. Model templates are also
a mechanism to implement patterns for domain-specific
languages and libraries of reusable model components.
Moreover, templates can be defined over concepts using
genericity as well, so that they can be applicable to fam-
ilies of languages. Hence, generic model templates are a
means to specify composable model patterns and frag-
ments in a language-independent way.

Finally, mixin layers [44] allow defining meta-model
templates provided with generic functional capabilities
to be plugged into different meta-models. We found es-
pecially useful the definition of semantic mixin layers
containing the necessary run-time infrastructure for the
definition of the semantics of meta-model families, to-
gether with associated model simulators expressed on
the generic types of the mixin.

As a proof of concept, we have implemented these
ideas in a multi-level meta-modelling framework called
MetaDepth [14]. This framework allows building sys-
tems with an arbitrary number of meta-levels, using
deep characterization through potency [3]. The frame-
work provides a simple textual syntax that we use to
illustrate the different elements we introduce in the pa-
per, although please note that we do not make use of
the multi-level features of our tool in this paper. Hence,
our aim is not to describe an extension of MetaDepth
or to stress its multi-level meta-modelling capabilities.
We believe that genericity has a wide potential in meta-
modelling, and hence what we describe here has imme-
diate applicability to other frameworks (multi-level or
not) like the MOF.

This paper is an extended version of [15]. Here we
include hybrid concepts as a way to provide further flex-
ibility by omitting some structural requirements from
concepts (which can be implemented in different ways by
different meta-models) and providing appropriate oper-
ations for encapsulation instead. We also introduce two
relation types between concepts: realization and gener-
alization. A realization is a static binding from a hybrid

concept into a structural one which provides an imple-
mentation for the operations in the hybrid concept, thus
making easier the reuse of any associated generic be-
haviour. The generalization relation between concepts is
similar to interface inheritance in Java. We have also
developed the idea of generic model templates, captur-
ing domain-specific modelling patterns in a meta-model
independent way. Finally, we have integrated the Ep-
silon Generation Language (EGL) [42] in MetaDepth,
so that generic code generators can be defined as well,
and included a section with further case studies.

The paper is organized as follows. Section 2 reviews
generic programming. Section 3 introducesMetaDepth
so that its syntax is used in the rest of the paper to illus-
trate the different elements. This section also introduces
the model manipulation and code generation capabilities
of MetaDepth by using the Epsilon Object Language
(EOL) and EGL. Section 4 presents structural concepts,
together with the binding from concepts to specific meta-
models. Section 5 shows how to define generic behaviours
and generic code generators. Section 6 provides flexibil-
ity to concepts by the notion of hybrid concept. This
section also introduces static bindings from hybrid con-
cepts to structural ones, as well as concept generaliza-
tions. Section 7 presents model templates and Section 8
introduces semantic mixin layers. In Section 9 we pro-
vide further examples that illustrate the presented ideas.
Section 10 discusses related research and Section 11 con-
cludes.

2 From Generic Programming to Generic
Model-Driven Engineering

Genericity [24] is a programming paradigm that firstly
appeared in languages like CLU and Ada, and was subse-
quently adopted by many languages like C++, Haskell,
Eiffel or Java. Its goal is to express algorithms and
data structures in a broadly adaptable, interoperable
form that allows their direct reuse in software construc-
tion. It involves expressing algorithms with minimal as-
sumptions about data abstractions, as well as general-
izing concrete algorithms without losing efficiency [24].
Genericity promotes a paradigm shift from types to al-
gorithms’ requirements, so that even unrelated types
may fulfil those requirements, hence making algorithms
more general and reusable. Generic programming has en-
abled some of the most widely used, reusable and flex-
ible libraries, like the C++ Standard Template Library
(STL) [47] or Boost [7].

In its basic form, generic programming involves pass-
ing type parameters to functions or data types which
are then called templates. Template functions and tem-
plate classes may require the parameter types to fulfil a
number of requirements for a correct instantiation and
execution of the template. This set of requirements is
usually expressed using a concept [37]. Examples of re-
quirements are a type which must define a “<” binary
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relation, or a list of data objects with a first element, an
iterator and a test to identify the end.

As an example, Listing 1 shows a C++ template
function sdiff that returns the difference between two
objects of type T , in absolute value. The operation
is not defined for integral types only, but the require-
ments for the type T are expressed by the concept1

LessThanCompSubst. The concept demands the type T
to define the “<” relation operator and a binary subtrac-
tion operation. Other languages such as Java support a
simpler notion of concept limited to express the require-
ments of a single type by demanding it to inherit from
a specified class or to implement a set of interfaces.

1 template <typename T> requires LessThanCompSubst<T>
2 T sdiff(T x, T y) {
3 return y < x ? (x-y) : (y-x);
4 }
5

6 concept LessThanCompSubst <typename T> {
7 bool operator<(T, T);
8 T operator-(T, T);
9 }

Listing 1 A template and a concept example in C++.

Mixins are classes designed to provide functionality
to other classes, typically through parameterized inheri-
tance, promoting code reuse and modularity. Mixin lay-
ers [44] extend mixins by encapsulating fragments of
multiple classes to define a layer of functionality, which
can be added to other sets of classes. They were proposed
as a technique for implementing collaboration-based de-
signs, where objects play different roles in different col-
laborations. In this context, mixin layers provide the
needed functionality for each collaboration, so that the
final system is obtained by composing mixin layers.

2.1 Applying genericity in Model-Driven Engineering

In this work, we adapt the previous ideas to MDE in
order to promote the modularity, extendibility, abstrac-
tion and reusability of models, meta-models, and model
management operations.

Fig. 1 shows the different elements we introduce.
First, we use concepts to gather requirements for (meta-
)models, and to be able to define both generic behaviours
and generic (meta-)models. In particular, similar to tem-
plate functions in C++, we can make a model manage-
ment operation generic by defining the operation over a
concept instead of over a particular meta-model. In this
way we obtain genericity because the concept can be
bound to several meta-models (namely those satisfying
the concept requirements) and the operation becomes
applicable to all of them. Moreover, similar to template
classes in C++, we can build (meta-)model templates
that include parameter types whose requirements are ex-
pressed through a concept. Again, these templates can

1 Concepts were postponed from C++0x, the last revision
of C++ [49].

be instantiated with any (meta-)model to which we can
bind the concept.
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Fig. 1 Fundamental elements for genericity in MDE.

In the rest of the paper we describe the elements
in Fig. 1 and some usage patterns. In particular, Sec-
tion 4 introduces concepts for expressing requirements
for meta-models, and the rules for binding a concept
to a meta-model. Then, Section 5 explores the use of
operation templates to define generic behaviour, like
generic simulators and code generators. We discuss bind-
ings from concepts to concepts as well as concept gen-
eralizations in Section 6. Next, Section 7 explores the
use of concepts to express requirements for models (in-
stead of meta-models) and define model templates. A
useful usage scenario for model templates is the defi-
nition of generic model fragments, composable via in-
terfaces whose requirements are expressed through con-
cepts. In this way, increasingly complex models can be
easily built by instantiating and connecting different
model templates. Finally, Section 8 presents meta-model
templates. A particular usage of these templates are
mixin layers, which are meta-model templates that can
be plugged into any meta-model satisfying the require-
ments expressed by a given concept.

Before delving into details, the next section intro-
duces MetaDepth as we will use its syntax to explain
the genericity building blocks.

3 MetaDepth

MetaDepth [14] is a new multi-level meta-modelling
framework with support for multiple meta-levels at the
same time using potency [3]. The potency of an entity
is a natural number that indicates the entity’s relative
meta-level. At each instantiation of the entity in a deeper
meta-level, the potency decreases in one unit. When
it reaches zero, we obtain an instance that cannot be
instantiated further (i.e. without type facet). This ap-
proach is very useful to describe what we call deep lan-
guages, which are languages that involve two or more
meta-levels at the user level. An example of a deep lan-
guage is the combination of UML class and object dia-
grams, if one thinks of object diagrams as instances of
class diagrams [14]. In the present paper we do not make
use of the multi-level capabilities of MetaDepth, but
stick to a two-level setting where meta-models and their
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elements have potency one, whereas their instances have
potency zero.

MetaDepth uses a textual syntax and is inte-
grated with the EOL and EGL languages of the Ep-
silon family [22]. EOL [32] extends OCL with imper-
ative constructs to manipulate models, and is used
in MetaDepth to express constraints and define be-
haviours. EGL [42] is a template-based code generator
language which can be used in MetaDepth to generate
code from models. In this section we give an overview
of the textual syntax of MetaDepth and the features
used in this paper, see [14] for further details.

As an example, Listing 2 shows the definition of a
meta-model for Petri nets using MetaDepth’s syntax.
The same meta-model is shown in Fig. 2 using a UML
representation to ease understanding. Petri nets are a
kind of automaton with two types of vertices: Places and
Transitions. Places contain tokens and can be connected
with transitions through arcs. In their turn, transitions
can also be connected to places through arcs.

NamedElement

name: String {id}

Place Transition

Token
* tokens

1

ArcPT

ArcTP

outTr

inTr
*
*

*
*
inPl

outPl

Fig. 2 Meta-model for Petri nets in UML.

1 Model PetriNet {
2

3 abstract Node NamedElement {
4 name : String { id };
5 }
6

7 Node Place : NamedElement {
8 outTr : Transition[*] { ordered, unique };
9 inTr : Transition[*] { ordered, unique };

10 tokens: Token[*] { unique };
11 }
12

13 Node Transition : NamedElement {
14 inPl : Place[*] { ordered, unique };
15 outPl: Place[*] { ordered, unique };
16 }
17

18 Node Token {}
19

20 Edge ArcPT(Place.outTr,Transition.inPl) {}
21 Edge ArcTP(Transition.outPl,Place.inTr) {}
22

23 minPlaces : $Place.allInstances()->size()>0$
24 }

Listing 2 Meta-model for Petri nets in metaDepth.

The listing declares a meta-model named PetriNet
by using the keyword Model (line 1), which has po-
tency 1 as this is the default potency if none is ex-
plicitly given. The meta-model declares an abstract
node NamedElement owning a field name (lines 3-5).
The field’s id modifier states that no two instances

of NamedElement can have the same value for the
field. Both Place and Transition inherit from
NamedElement. The former declares three references
(outTr, inTr and tokens) with cardinality 0..*. Ref-
erences are a kind of field, whose type is a user-defined
Node. The modifier ordered keeps the collection ele-
ments in the order of assignment, while unique forbids
duplicated elements. The opposite ends of outTr and
inTr are declared by the edges ArcPT and ArcTP.
Similar to Nodes, Edges can also be provided with
fields. Thus, in MetaDepth’s syntax, Model is similar
to a meta-model, Node to a meta-class, and Edge to a
meta-association (in fact to an associative class).

MetaDepth supports the definition of constraints
and derived attributes in Java and EOL. Constraints
can be declared in the context of Models, Nodes and
Edges. Line 23 in the listing declares an EOL constraint
named minPlaces, which demands PetriNet mod-
els to have at least one Place. Please note that, while
in MOF-based meta-modelling environments this con-
straint should be placed in the context of some meta-
class (like Place itself, or in an additional root class),
MetaDepth allows a more natural placement of the
constraint in the context of the model itself. More-
over, as MetaDepth allows specifying multiplicities
in the definition of Nodes, the same effect can be ob-
tained by replacing line 7 by “Node Place[1..*] :
NamedElement {”.

The defined meta-model can be instantiated as List-
ing 3 shows. This Petri net model represents a system
with two processes (producer and consumer) communi-
cating through a buffer of infinite capacity. Fig. 3 shows
the system using the usual Petri nets visual notation,
with places represented as circles, transitions as black
rectangles, and tokens as black dots inside places. The
dotted rectangles delimit the different conceptual com-
ponents of the system. All elements in Listing 3 have
potency zero (as they are instances of elements of po-
tency 1) and cannot be further instantiated.

1 PetriNet ProducerConsumer {
2 Place WP { name="waitProduce"; }
3 Place RP { name="ReadyProduce"; }
4 Transition ReadyP { name="readyP"; }
5 Transition Produce { name="in"; }
6 ArcPT (RP, Produce);
7 ...
8 Place Buffer { name="Buffer"; }
9 ...

10 Place C { name="Consume"; }
11 Place WC { name="waitConsume"; }
12 Transition Consume { name="out"; }
13 Transition ReadyC { name="waitC"; }
14 ...
15 }

Listing 3 A Petri net with the Producer-Consumer example
in MetaDepth’s syntax.

Listing 3 makes use of the normal instantiation capa-
bilities found in most meta-modelling frameworks (like
EMF [46]). However, one soon notices that the definition
of our model could be improved concerning abstraction
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ReadyProduce

waitProduce

readyP

Consume

waitConsume

waitC

Bufferin out

Fig. 3 A Petri net with the Producer-Consumer example,
in visual notation.

and modularity. First, the user could have been offered
higher-level modelling elements than places and transi-
tions, like Buffers and Processes. Moreover, inspecting
the model, one realizes that the two processes have ex-
actly the same structure (two places connected by tran-
sitions). Therefore, it would have been useful to have
a meta-modelling facility to define model components –
similar to modelling patterns – that the user can instan-
tiate and interconnect through suitable interfaces. Such
Petri net component models are enclosed in dashed rect-
angles in Fig. 3. Section 7 will demonstrate how the use
of templates allows performing this at the model level,
without any need to modify the meta-model.

3.1 Defining in-place transformations

MetaDepth allows defining behaviour for models us-
ing either Java or EOL [14]. EOL is however very well
suited for this purpose, as it permits defining methods
on the meta-classes of the meta-models. Listing 4 shows
a simulator written in EOL to execute Petri net mod-
els. The entry point for its execution is the operation
main (line 2), which is annotated with the meta-model
to which the operation is applicable (PetriNet in our
case, so that the operation can be applied to instances of
this meta-model). The listing declares several auxiliary
operations. Two of them are defined on a global context:
writeState (line 15) prints the state of the net, and
getEnabled (line 17) returns a set of enabled transi-
tions. The other two – enabled and fire, in lines 22
and 26 – are defined on the context of the Transition
meta-class. While operation enabled checks if the tran-
sition is fireable (all input places have at least one token),
fire executes the transition, removing tokens from the
pre-places and adding tokens to the post-places. These
operations are invoked in the while loop of the main()
operation (lines 6-12), firing randomly one of the en-
abled transitions. The loop is restricted to a maximum
number of iterations to prevent infinite executions.

1 @metamodel(name=PetriNet,file=PetriNet.mdepth)
2 operation main() {
3 var maxStep : Integer := 100;
4 var numStep : Integer := 0;
5 var enabled : Set(Transition) := getEnabled();
6 while (enabled.size()>0 and numStep<maxStep) {
7 var t := enabled.random();
8 t.fire();
9 writeState(numStep);

10 numStep := numStep+1;
11 enabled := getEnabled();

12 }
13 }
14

15 operation writeState(step: Integer) {...}
16

17 operation getEnabled() : Set(Transition) {
18 return Transition.allInstances().select( t |
19 t.enabled()).asSet();
20 }
21

22 operation Transition enabled() : Boolean {
23 return self.inPl->forAll(p|p.tokens.size()>0);
24 }
25

26 operation Transition fire() {
27 for (p in self.outPl) {
28 p.tokens.add(new Token);
29 }
30 for (p in self.inPl) {
31 var t : Token := p.tokens.random();
32 p.tokens.remove(t);
33 delete t;
34 }
35 }

Listing 4 A simulator for Petri nets.

This simulator works well for instances of the Petri
net meta-model. However, there are many languages
whose semantics can be defined in terms of Petri nets,
such as workflow languages [9] and UML activity dia-
grams [39]. Also, domain specific languages like produc-
tion systems [17] (where parts are consumed and pro-
duced by machines), communication systems [8] (where
messages are sent and received by nodes), and data-flow
languages [16] (where data are consumed and produced
by processors) share semantics with Petri nets. There-
fore, couldn’t we abstract the essential elements of Petri
net-like languages and define their behaviour in a generic
way? Section 4 will show that concepts are a solution to
this issue.

3.2 Defining code generators

We have recently integrated EGL into MetaDepth.
EGL is a template-based language for producing textual
artefacts from models. It combines the model navigation
capabilities of EOL with facilities for emitting textual
code. The EOL code in the templates is delimited by
the markers “[%” and “%]”, whereas the text outside
these markers is either emitted in the standard output
or saved into a file.

As an example, Listing 5 shows an excerpt of an EGL
template that generates a PNML [27] text file from a
Petri net model. PNML is a standard XML representa-
tion for different kinds of Petri nets, used by many tools
like CPNTools [13] or PIPE [6]. Line 2 indicates that
the template is defined over the Petri Net meta-model,
and is to be executed on its instances. Then, lines 4-6
emit the XML header, and lines 7-16 iterate on all in-
stances of Place generating the text in lines 8-15 at each
iteration.

1 [%
2 @metamodel(name=PetriNet,file=PetriNet.mdepth)
3 %]
4 <?xml version="1.0" encoding="iso-8859-1"?>
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5 <pnml>
6 <net id="Net-One" type="P/T net">
7 [% for (h in Place.allInstances()) {%]
8 <place id="[%=h.name%]">
9 <name>

10 <value>[%=h.name%]</value>
11 </name>
12 <initialMarking>
13 <value>[%=h.tokens.size()%]</value>
14 </initialMarking>
15 </place>
16 [%}%]
17 ...

Listing 5 Code generator for Petri nets (excerpt).

The PNML code generated from a Petri net model
can be loaded in CPNTools or PIPE for analysis. For
instance, we can calculate the reachability graph [36] of
the net, a graph-based representation of all its possible
states, which can be used for verification of reachability
properties and model-checking.

Again, we would like to use the template in Listing 5
with other languages (apart from Petri nets) whenever
their semantics can be mapped to Petri nets, and with-
out requiring the types of a specific meta-model. The
next section will show how structural concepts are a
means to gather requirements for the executability of a
given model management operation over certain meta-
models. Hence, they allow the development of generic
model operations and code generators which can be used
with different meta-models.

4 Structural Concepts

A concept in meta-modelling is a pattern specification
that expresses requirements for a model (at any meta-
level). Concepts serve as a dual typing in the context
where they are used (e.g. generic model management op-
erations), providing an extra level of indirection which
we use to define behaviour independently of specific
meta-models. This is useful for reusability and compo-
sition of behaviours, which can be defined in terms of
concepts instead of in terms of particular meta-models.

In order to motivate and introduce the use of con-
cepts, we first start discussing an illustrative scenario.

4.1 Motivation

Assume one needs to describe the behaviour of two lan-
guages, one in the domain of Production Systems (where
parts are produced and consumed by machines) and the
other for Communication Networks (where packets are
produced and consumed by computers). The most im-
mediate approach is to define one program to simulate
the first kind of models, and another one to simulate the
second kind of models. This situation is illustrated in
Fig. 4. In the figure we assume that behaviours are re-
alized using EOL programs, however our discussion and
subsequent proposal based on concepts are applicable to
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Meta-Model
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Behaviour 1

(EOL)
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q
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»
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q
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«
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( )
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Fig. 4 Direct approach to behaviour specification.

other means of specification of in-place model transfor-
mations, like e.g. graph transformation [20].

An analysis of the semantics of these two languages
reveals similarities between the two programs imple-
menting them. This is due to the fact that both be-
haviours can be mapped into the standard semantics of
Petri nets. Hence, instead of defining such similar be-
haviours twice, we can transform the models into a com-
mon language (Petri nets) and define the behaviour for
the common language only once. This situation is de-
picted in Fig. 5, where Model 1 is transformed into
Model 1’ and Model 2 is transformed into Model
2’, being both transformed models conformant to the
same meta-model for which the behaviour is specified
(Petri nets in our example). Unfortunately, this situation
is not ideal either, as one has to define specific model-to-
model transformations between each language and the
common language. Moreover, after modifying the trans-
formed models according to the behaviour, these have to
be translated back to their original language.

M2M trafo.

1to3

M2M trafo.

2to3

«requires» «requires» «requires»

Meta-Model

1

Meta-Model

2

Meta-Model

3

«requires»
«requires»

«requires»

tgt tgt

«conforms to» «conforms to»«conforms to» «conforms to»src
src

Model 1 Model 2

«requires»executes on

Model 1’ Model 2’

executes on

Behaviour 1

(EOL)

Fig. 5 Transformational approach to behaviour specifica-
tion.

An improvement that avoids transforming models is
to use an extension, nominal subtyping or inheritance
mechanism for meta-models [33]. In this case which
Fig. 6 illustrates, the meta-models 1 and 2 explicitly
extend a third meta-model for which the behaviour is
defined. In particular, their classes extend (or subclass)
the classes that participate in the defined behaviour for
meta-model 3, so that this behaviour also applies to the
classes in 1 and 2. However, this solution is intrusive as
it requires all meta-models for which we want to define
behaviour to inherit or extend the same meta-model.
Hence, this approach requires the parent meta-model to
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be defined beforehand, and the adopted solution may be-
come unfeasible if more than one semantics (e.g. timed
and untimed) are to be defined for the same language.

Meta-Model

33
«extends» «extends»

«requires»

Meta-Model

1

Meta-Model

2

«conforms to» «conforms to»

Behaviour

(EOL)

executes on executes on

Model 1 Model 2

«conforms to» «conforms to»executes on executes on

Fig. 6 Inheritance of behaviour by model extension.

In this scenario, concepts can simplify the situation as
they can express requirements on meta-models or mod-
els that some specifications (in this case the behaviour)
need. In our example, we can define a concept express-
ing the requirements that a simulator for Petri net-like
languages needs. This simulator abstracts from the spe-
cific details of the languages, and uses only the elements
defined in the concept, hence being independent of any
meta-model and therefore non-intrusive. Thus, if our two
original languages satisfy the requirements of the con-
cept, then the behaviour can be applied to their in-
stances as shown in Fig. 7. This scheme is the simplest
and cleanest of the four, and its benefits increase as we
find new meta-models in which the concept is applicable
as we can reuse the defined behaviour for them. More-
over, the mechanism is non-intrusive: the meta-models
for which we are defining the behaviour are not modified
and are oblivious of the concepts. That is, as a difference
to Fig. 6, meta-models do not have any dependence on
the concepts, and do not require the presence of con-
cepts beforehand. A similar effect could be achieved by
using structural subtyping mechanisms [10,45], where
the relations between the subtypes (meta-models) and
the supertypes (concepts) do not need to be explicitly
declared because they are inferred. Section 10 will dis-
cuss the similarities and differences between structural
subtyping and our proposal based on concepts in more
detail.

Concept

A
bi d bi d

Meta-Model Meta-Model

A
«binds» «binds»

Behaviour

«requires»

1 2

«conforms to» «conforms to»

(EOL)

executes on executes on

Model 1 Model 2

Fig. 7 Behaviour specification based on concepts.

4.2 Defining and binding structural concepts

A structural concept is a specification gathering the
structural requirements that need to be found in a
model, at a particular meta-level. In this section we will
discuss concepts for meta-models, however in Section 7
we will show that concepts can be defined at the model
level in the same way as for meta-models.

The simplest way for expressing requirements for a
meta-model is in the form of a meta-model as well.
Therefore, in our approach, a concept (at the meta-
model level) has the form of a meta-model, where the
elements in the concept are interpreted as variables, to
be bound to elements of specific meta-models. Meta-
model concepts may include inheritance relations as well.
Moreover, as we will see, concepts can be enriched with
further constraints, to be evaluated when the binding is
performed.

In our approach, a concept has a name and a number
of parameters that represent generic types of models,
nodes, edges or fields. Concepts can be bound against
meta-models by a pattern-matching mechanism. In this
way, a concept C defines a language L(C) of all meta-
models that satisfy the requirements imposed by the
concept C. Thus, L(C) contains a family of meta-models
sharing similar characteristics. This situation is depicted
in Fig. 8. The set of meta-models belonging to set L(C)
can be characterized using a function bind from (the
set of nodes, edges and fields in) the concept to (the
set of elements in) the meta-model. If such a function
bind : C → M exists, then we say that M ∈ L(C).

Concept C
(meta-model

level)

«defines»

L(C)
«binds»

Meta-Model

&M
Meta-

Model-1

Meta-

Model-i

«belongs to»

Fig. 8 Meta-model concept, associated language and bind-
ing.

The bind function maps each model, node, edge or
field in the concept to a model, node, edge or field in the
meta-model, respectively. There is no need to bind the
inheritance relations appearing in the concept though,
but the binding must preserve the subtyping relation.
Thus, if a node a inherits from a node b in the concept,
then the node bound to a must be a direct or indirect
child of the node bound to b. Moreover, if two fields (or
references) are bound, then so must be their container
nodes. Alternatively, the bound meta-model node can
be a subnode of the actual field’s (or reference’s) con-
tainer node. In any case, the binding must preserve the
type of fields and references. As a consequence, since
edges are made of two opposite references, if an edge e
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in the concept is mapped to an edge bind(e) in the meta-
model, then the source node of e should be mapped to
the source node of bind(e), and similarly for the target
nodes. The binding must also preserve the cardinality
of fields and references. Finally, the binding can be non-
injective, therefore two different nodes in the concept can
be mapped to a single node in the meta-model, provided
that such a node defines all the features defined by the
two nodes in the concept.

We use concepts to define generic model manage-
ment operations using their parameters as generic types,
as well as to describe conditions to be fulfilled by tem-
plate parameters. In contrast to generic programming,
where concepts are used to restrict the allowed types to
only those defining a certain set of operations, concepts
in meta-modelling refer to structural features of meta-
models. Thus, concepts can impose a certain structure
for nodes, edges and fields, as well as define arbitrary
constraints to restrict their applicability.

Fig. 9 shows a concept gathering the structural re-
quirements for meta-models to be simulated with simi-
lar semantics to Petri nets, which we call Token-Holder
semantics. Listing 6 shows the same concept using
MetaDepth’s syntax. The concept declares seven pa-
rameters, which are treated as variables and start by
“&”. The body of the concept requires &M to be a model
with three nodes. Node &T plays the role of token. Node
&H plays the role of a holder of tokens, as it is demanded
to define a reference of type &T. Node &P plays the role
of a process or transition, and it must define two ref-
erences modelling the connection to input and output
holders. The body of a concept may include extra con-
ditions expressed in EOL, as well as constant elements
as opposed to variables. For example, we could demand
node &H to have a field called name of type String.

&M

concept TokenHolder

&H &P*

&inHolders

*

&outHolders

&T

&tokens
*

Fig. 9 Structural concept for Token-Holder semantics.

1 concept TokenHolder(&M, &H, &P, &T, &tokens,
2 &inHolders, &outHolders) {
3 Model &M {
4 Node &H {
5 &tokens : &T[*];
6 }
7 Node &P {
8 &inHolders : &H[*];
9 &outHolders: &H[*];

10 }
11 Node &T {}
12 }
13 }

Listing 6 Structural concept for Token-Holder semantics in
MetaDepth syntax.

We use this concept to characterize the family of
meta-models sharing the Token-Holder semantics. For
example, the concept can be bound to the PetriNet
meta-model of Listing 2, where &H is bound to Place,
&P to Transition, and so on. Listing 8 shows how
this binding is specified in MetaDepth through the
bind command, to which we pass specific meta-model
elements.

1 bind TokenHolder(PetriNet,
2 PetriNet::Place,
3 PetriNet::Transition,
4 PetriNet::Token,
5 PetriNet::Place::tokens,
6 PetriNet::Transition::inPl,
7 PetriNet::Transition::outPl)

Listing 7 Binding the TokenHolder concept to the Petri
nets meta-model defined in Listing 2.

The same concept can be bound to other unrelated
meta-models as well. As an example, Listing 8 defines
a meta-model for Production Systems and its binding
over the TokenHolder concept. The meta-model de-
clares machines and conveyors, which can be connected
to each other. Conveyors hold parts, which are fed into
machines. Machines process parts, which are produced
into conveyors. In this way, this working scheme is ad-
equate for its simulation using Token-Holder semantics.
Hence, we use the TokenHolder concept and bind it to
the meta-model in lines 22-28: conveyors act like token
holders, machines as processes or transitions, and parts
as tokens.

1 Model ProductionSystem {
2 Node Machine {
3 ref : String;
4 type : String;
5 inConveyors : Conveyor[*];
6 outConveyors : Conveyor[*];
7 }
8 Node Conveyor {
9 outMachines : Machine[*];

10 inMachines : Machine[*];
11 parts : Part[*];
12 }
13 Node Part {
14 creationTime : int;
15 owner : Conveyor[0..1];
16 }
17 Edge MC(Machine.outMachines,Conveyor.inConveyors);
18 Edge CM(Conveyor.outConveyors,Machine.inMachines);
19 Edge iP(Part.owner,Conveyor.parts);
20 }
21

22 bind TokenHolder(ProductionSystem,
23 ProductionSystem::Conveyor,
24 ProductionSystem::Machine,
25 ProductionSystem::Part,
26 ProductionSystem::Conveyor::parts,
27 ProductionSystem::Machine::inConveyors,
28 ProductionSystem::Machine::outConveyors)

Listing 8 Binding the TokenHolder concept to the
Production System meta-model.
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5 Generic Model Management Operations

We can define generic model management operations by
using the variable types of a concept, instead of the types
of a specific meta-model. In this way, the model manage-
ment operation is applicable to instances of any meta-
model that satisfies the concept’s requirements. We next
provide two examples, which generalize those in Sec-
tions 3.1 and 3.2. The first one is a generic simulator
and the second a generic code generator, both defined
on the TokenHolder concept and hence applicable to
instances of any meta-model this concept can be bound
to.

5.1 Generic simulators

Listing 9 shows an excerpt of the EOL simulator for the
TokenHolder concept. The program first states that it
needs concept TokenHolder (line 1), therefore it will
be executed on instances of meta-models satisfying the
concept. Then, the program uses the generic types and
features defined by the concept. This program is actu-
ally an abstraction of that of Listing 4, because this one
does not require concrete meta-model types. The work-
ing scheme is the same, but the operations enabled
and fire are added to the node &P gets bound to.
The simulator can be used to execute any instance of
the ProductionSystem and PetriNet meta-models,
hence being more reusable than the one in Listing 4.

1 @concept(name=TokenHolder,file=TokenHolder.mdepth)
2 operation main() {
3 var maxStep : Integer := 100;
4 var numStep : Integer := 0;
5 var enabled : Set(&P) := getEnabled();
6 while (enabled.size()>0 and numStep<maxStep) {
7 var t := enabled.random();
8 t.fire();
9 writeState(numStep);

10 numStep := numStep+1;
11 enabled := getEnabled();
12 }
13 }
14

15 operation writeState(step: Integer) {...}
16

17 operation getEnabled() : Set(&P) {
18 return &P.allInstances().select(t |
19 t.enabled()).asSet();
20 }
21

22 operation &P enabled() : Boolean {
23 return self.&inHolders->forAll(p |
24 p.&tokens.size()>0);
25 }
26

27 operation &P fire() {
28 for (p in self.&outHolders) {
29 p.&tokens.add(new &T);
30 }
31 for (p in self.&inHolders) {
32 var t : &T := p.&tokens.random();
33 p.&tokens.remove(t);
34 delete t;
35 }
36 }

Listing 9 Generic simulator over the TokenHolder
concept.

5.2 Generic code generators

In addition to simulators, we can also define generic code
generators over the TokenHolder concept. Listing 10
shows an EGL template over the concept. Compared to
Listing 5 it can be noted that line 9 iterates on all in-
stances of the type &H gets bound to. The EGL template
can only use the features defined in the concept, and so
we cannot use h.name as holders are not required to
have a name field. Instead, we concatenate the name of
the type &H gets bound to (by means of h.type()) with
an index, we store this in variable name in line 10, and
subsequently we use the variable in lines 12 and 14.

1 [%
2 @concept(name=TokenHolder,file=TokenHolder.mdepth)
3 %]
4 <?xml version="1.0" encoding="iso-8859-1"?>
5 <pnml>
6 <net id="Net-One" type="P/T net">
7 [%
8 var i : Integer := 0;
9 for (h in &H.allInstances()) {

10 var name : String := h.type().name.toString()+i;
11 %]
12 <place id="[%=name%]">
13 <name>
14 <value>[%=name%]</value>
15 </name>
16 <initialMarking>
17 <value>[%=h.&tokens.size()%]</value>
18 </initialMarking>
19 </place>
20 [%
21 i := i+1;
22 }
23 %]
24 ...

Listing 10 Generic code generator over the TokenHolder
concept (excerpt).

Altogether, we can apply the generic code gen-
erator to the instances of meta-models like the
ProductionSystem and PetriNet, hence obtain-
ing meta-model independence.

However, the presented binding of concepts to meta-
models is somehow limited, as it requires an embed-
ding of the structure of the concept in the concrete
meta-model. A concept reflects a design decision, but
other possibilities may exist as well. For example, the
TokenHolder concept explicitly models tokens with a
separate node, but some meta-models could have mod-
elled tokens with an integer field in the holder node.
Similarly, we have modelled the relation between hold-
ers and processes with references, but other more com-
plex relations are possible as well, like using intermedi-
ate nodes. Therefore, a more flexible mechanism is de-
sired which allows binding concepts to meta-models with
certain structural heterogeneities. The next section pro-
poses so-called hybrid concepts as one solution to this
problem.
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6 Hybrid Concepts, Static Binding and Concept
Generalization

Structural concepts allow for the definition of generic
model management operations by using the type vari-
ables of the concept. Then, the concept can be bound
to several meta-models, and in this way the operation
becomes reusable. However, the binding requires an em-
bedding of the concept in the meta-model. One way to
overcome this problem is through the definition of suit-
able interfaces that (partially) hide the specific struc-
ture of concepts behind appropriate operations. We call
such an operation-based requirement specification a hy-
brid concept, as in addition to structural requirements it
contains the necessary operations to be defined by cer-
tain meta-model elements.

For example, Listing 11 shows a hybrid concept that
requires two nodes: &H representing the role of hold-
ers and &P representing the role of processes. However,
instead of demanding certain structural relations be-
tween holders and processes, or between holders and
tokens, their connectivity is modelled by operations.
Hence, the concept requires three operations in hold-
ers: tokens() to query the number of tokens in the
holder, and addToken() and delToken() to increase
or decrease the number of tokens. For the process role
the concept requires operations inputHolders() and
outputHolders() returning the collections of input
and output holders of a given process. These operations
are not interpreted as variables, and thus their names
are not preceded by &, but operations with same name
and signature should be provided when performing the
binding.

1 concept ProcessHolderB(&M, &H, &P) {
2 Model &M {
3 Node &H{
4 operation tokens() : Integer;
5 operation addToken();
6 operation delToken();
7 }
8 Node &P{
9 operation inputHolders() : Set(&H);

10 operation outputHolders(): Set(&H);
11 }
12 }
13 }

Listing 11 Hybrid concept ProcessHolderB.

A generic simulator or code generator may then use
the operations declared in the hybrid concept. Listing 12
shows the generic simulator using the hybrid concept of
Listing 11, omitting the body of operation main as it
does not change.

1 @concept(name=ProcessHolderB,file=ProcHolderB.mdepth)
2 operation main() {
3 ...
4 }
5

6 operation getEnabled() : Set(&P) {
7 return &P.allInstances().select(t |
8 t.enabled()).asSet();
9 }

10

11 operation &P enabled() : Boolean {

12 return self.inputHolders()->forAll(p|p.tokens()>0);
13 }
14

15 operation &P fire() {
16 for (p in self.outputHolders()) p.addToken();
17 for (p in self.inputHolders()) p.delToken();
18 }

Listing 12 Generic simulator over hybrid concept
TokenHolderB.

A hybrid concept may require structural elements,
in addition to Nodes, just like structural concepts. How-
ever, its power comes from being able to hide accidental
details required from specific meta-models. In this way,
the hybrid concept for Token-Holders has a higher-level
of abstraction than the structural one, as it imposes less
structural requirements to the bound meta-models. As
a drawback, the meta-models are required to implement
the operations specified in the concept. In MetaDepth,
these operations are defined in a separate file which is
indicated when establishing the binding. As an exam-
ple, Listing 13 shows the binding of our hybrid concept
to the Petri nets meta-model shown in Listing 2. Below,
Listing 14 shows the implementation of the operations
for the bound meta-model.

1 bind ProcessHolderB(PetriNet,
2 PetriNet::Place,
3 PetriNet::Transition)
4 requires "PetriNetOperations.eol"

Listing 13 Binding the ProcessHolderB hybrid concept
to the Petri nets meta-model.

1 operation Place tokens() : Integer {
2 return self.tokens.size();
3 }
4 operation Place addToken() {
5 self.tokens.add(new Token);
6 }
7 operation Place delToken() {
8 self.tokens.remove( self.tokens.random() );
9 }

10 operation Transition inputHolders() : Set(Place) {
11 return self.inPl;
12 }
13 operation Transition outputHolders() : Set(Place) {
14 return self.outPl;
15 }

Listing 14 Operations needed to bind the hybrid concept
ProcessHolderB to the Petri nets meta-model.

In order to illustrate the versatility of our hybrid con-
cept, assume we want to bind it to a different meta-
model for Petri nets where tokens are modelled with an
integer field tokens in node Place. In this case the
only difference with respect to the previous example is
that the operations implemented in Place would be dif-
ferent. These operations are shown in Listing 15.

1 operation Place tokens() : Integer {
2 return self.tokens;
3 }
4 operation Place addToken() {
5 self.tokens := self.tokens+1;
6 }
7 operation Place delToken() {
8 self.tokens := self.tokens-1;
9 }
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Listing 15 Some operations needed to bind the hybrid
concept ProcessHolderB to a variation of the Petri net
meta-model where tokens are modelled as an integer field.

Altogether, hybrid concepts abstract from acciden-
tal details by encapsulating them in suitable operations,
therefore being applicable to a larger set of meta-models.
However, they leave more burden to the reusers of the
generic operations, as they need to provide an implemen-
tation for the operations (even though sometimes they
are straightforward, like in Listings 14 and 15). In this
sense, hybrid concepts act as interfaces (in the sense of
e.g. Java interfaces) for meta-models.

This situation is illustrated in Fig. 10, where the up-
per part shows the elements defined by the developer
of the generic model management operation, and the
lower part the elements that the user of the generic op-
eration defines. In particular, the user must implement
the required operations for his specific meta-model. The
next subsection will show how to facilitate the binding
of hybrid concepts to arbitrary meta-models by provid-
ing alternative generic implementations for the required
operations, so that they can be directly reused.
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Fig. 10 Binding a hybrid concept.

6.1 Static bindings: Binding hybrid concepts to
structural concepts

A hybrid concept can be bound to many structurally
different meta-models. For instance, in our example, one
meta-model may choose to represent tokens as an inte-
ger field, and a different meta-model as a reference to a
node for the tokens. Each possibility will require the user
of the concept to implement a different version of the
concept’s operations. In order to lighten this work, the
developer of the concept may anticipate possible meta-
model structures and implement the operations accord-
ing to them. In particular, as Fig. 11 shows, he can build
a structural concept for each foreseen meta-model, bind
the hybrid concept to the structural one, and implement
the operations using the types of the structural concept.
We call such a binding from a hybrid to a structural
concept a static binding. We also say that the structural

concept and their operations realize the hybrid concept.
From a technical perspective, this solution just makes
use of another level of indirection to achieve its goals.
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Fig. 11 Realizations: binding hybrid to structural concepts.

This approach has several advantages. First, users of
the hybrid concept do not need to implement its oper-
ations, but they can select a suitable structural concept
implementing them. If the user does not find a struc-
tural concept that fits his meta-model, then he will have
to bind the hybrid concept and implement its opera-
tions. This implementation may be lifted to become a
new structural concept realizing the hybrid one. Second,
the generic model management operation is still defined
only once, over the hybrid concept.

As an example, Listing 16 shows a structural concept
for the Token-Holder semantics where tokens are repre-
sented as integers. The listing also includes the binding
of the hybrid concept in Listing 11 to this new structural
concept. Below, Listing 17 contains the generic imple-
mentation of the operations required by the hybrid con-
cept in terms of the structural concept.

1 concept ProcessHolderInt(&M, &H, &P, &tokens,
2 &inHolders, &outHolders) {
3 Model &M {
4 Node &H {
5 &tokens : int;
6 }
7 Node &P {
8 &inHolders : &H[*];
9 &outHolders: &H[*];

10 }
11 }
12 }
13

14 bind ProcessHolderB(ProcessHolderInt,
15 ProcessHolderInt::&H,
16 ProcessHolderInt::&P)
17 requires "ProcessHolderIntOperations.eol"

Listing 16 Structural concept and static binding to hybrid
concept.

1 operation &H tokens() : Integer {
2 return self.&tokens;
3 }
4 operation &H addToken() {
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5 self.&tokens := self.&tokens+1;
6 }
7 operation &H delToken() {
8 self.&tokens := self.&tokens-1;
9 }

10 operation &P inputHolders() : Set(&H) {
11 return self.&inHolders;
12 }
13 operation &P outputHolders() : Set(&H) {
14 return self.&outHolders;
15 }

Listing 17 Operations required by the hybrid concept
expressed over the structural concept ProcessHolderInt.

The availability of several realizations for the same
hybrid concept provides a kind of overloadingmechanism
for the required operations in the hybrid concept. In this
sense, a generic operation defined over a hybrid concept
is similar to the template method design pattern [23],
as the required operations will be provided with an im-
plementation either in realizations or when binding the
concept to a specific meta-model. Altogether, realiza-
tions allow retaining the advantages of a more abstract
and reusable concept (by using hybrid concepts), as well
as an easy way to reuse the generic behaviour (by a suit-
able realization implementing the operations required by
the hybrid concept).

6.2 Concept specialization

Similar to class or interface inheritance in object-
oriented programming languages, we support concept
specialization as a way to construct general/specific hier-
archies of concepts, where the generic behaviour defined
over a concept is applicable to all specializations of the
concept as well. Concept specialization is also a means
to construct concepts incrementally.

As an example, Listing 18 shows an extension of
the hybrid concept ProcessHolderB defined in List-
ing 11. The purpose of the new concept is to charac-
terize the Token-Holder semantics considering time, so
that processes do not fire immediately but after a certain
time elapse. The specialization TimedProcessHolder
requires for this purpose an additional operation get-
Time().

1 concept TimedProcessHolder(&M,&H,&P)
2 extends ProcessHolderB(&M,&H,&P){
3 Model &M {
4 Node &P{
5 operation getTime() : Real;
6 }
7 }
8 }

Listing 18 Extending the hybrid concept
ProcessHolderB.

In this way, we can apply the simulator for
ProcessHolderB to instances of meta-models bound
with concept TimedProcessHolder. This simulator
makes an abstraction providing an untimed simula-
tion of the model. One can define a simulator over the
TimedProcessHolder concept as well. Actually, such

a simulator needs to use events, event lists and further
structures which are not required by the concept, but
which are needed for the simulation. We will discuss
in Section 8 the use of semantic mixin layers as a way
to add such structure to meta-models consistent with
TimedProcessHolder.

7 Model Templates

Concepts express requirements of models and meta-
models. By using such an abstraction mechanism, be-
haviours and transformations can be expressed in a
type independent way, becoming more reusable. How-
ever, genericity can be applied not only to behaviours,
but to models and meta-models as well.

As already noticed in the example of Listing 3, it is
desirable to have a means to define libraries of model
fragments with well defined interfaces, so that users can
be more productive when building models. With such a
mechanism, models could be built by selecting, instanti-
ating and interconnecting model fragments. In this sec-
tion we show how model templates realize this idea. We
use model templates to define reusable models, where
their interface requirements are specified by means of
concepts. Hence, compositionality is obtained without
the need to modify the meta-models.

Up to now we have used concepts to express require-
ments for meta-models, but we can use them to define
requirements for models as well. This is illustrated in
Fig. 12. A concept C at the model level expresses a
number of requirements that are fulfilled by a (possibly
infinite) set of models L(C). We say that any model in
L(C) can be bound to the concept C. The concept itself
uses types from some meta-model (depicted as relation
“typed on”), of which the models in L(C) are instances.
Whereas the relation “conforms to” indicates that the
models use the types of the meta-model and satisfy all its
integrity constraints, relation “typed on” indicates that
the concept uses the types of the meta-model but it is
not required to satisfy its integrity constraints. Thus,
a concept for models is typed on a given meta-model
but might violate, e.g., some of the minimum cardinal-
ity constraints imposed by the meta-model, hence not
being conformant to it.

Model templates use concepts to express require-
ments on the parameters they receive. They declare a
number of variables which can be checked against con-
cepts. In this way, when the templates are instantiated,
an implicit binding process checks whether the actual
parameters satisfy the concepts. A template T requiring
concept C defines a language L(T ) of all its possible in-
stantiations using as parameters any element of L(C),
the language defined by the concept. In this way, a tem-

plate can be seen as a function L(C)
T→ L(T ).

The possibility of instantiating templates is very in-
teresting for modelling, because we can express patterns
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Fig. 12 Scheme of concepts for models.

and generic model components using templates, which
we can later instantiate and combine. Such model tem-
plates define a generic interface through appropriate con-
cepts expressing the requirements for a correct intercon-
nection. This observation is depicted in Fig. 13. The pic-
ture shows a model template T , which is designed to be
composable by importing another model, and possibly
performing some connections to elements of that other
model. Instead of specifying the concrete model to be
imported, template T imports any model that satisfies
the concept C. This concept expresses the requirements
for composability of these two models. Genericity is ob-
tained because we are able to compose template T with
any model in L(C). Instantiating T means choosing one
model M ∈ L(C) (i.e. a model bound to C) for the
composition. The template definition and its instances
are therefore at the same meta-level. In this way, con-
cepts provide a non-intrusive means to express interface
requirements, because there is no need to modify the
meta-models. It is also possible that a model template
uses several concepts for expressing requirements for sev-
eral interfaces.
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Fig. 13 Scheme of model templates.

Please note that instantiating a model template
might yield a model that is not conformant to the meta-
model. This is so as the template model typically imports
some other variable models received as parameters, and

the result of this import may violate some integrity con-
straint. While in MetaDepth one can rely on a verifi-
cation procedure after the import operation takes place,
alternatively, the concepts could also encode the condi-
tions needed from the model parameters to yield a cor-
rect instantiation.

Consider again the Producer-Consumer Petri net
model presented in Fig. 3. The model would benefit from
a higher-level representation enabling the definition of
processes (for the producer and the consumer) as well
as of buffers. For this purpose we can define two model
templates, acting like model components or modelling
patterns that the modellers can use to construct their
models.

Listing 19 shows how to specify these templates with
MetaDepth. The first template Buff2 (lines 7-14)
defines a generic buffer with one input and one output
transition. These two transitions (&Tri, &Tro), together
with their owning models (&PNi, &PNo), are param-
eters of the template. The template imports both re-
ceived models (line 10), declares one place (line 11) and
connects it to the received transitions (lines 12-13). In
addition, the template requires in lines 8-9 that the in-
put parameters satisfy the concept SimpleTrans. The
concept, defined in lines 1-5, requires the transition to
have one input and one output place, checked by the
EOL constraint in line 5.

1 concept SimpleTrans(&M, &T) {
2 PetriNet &M {
3 Transition &T {}
4 }
5 } where $&T.inPl.size()=1 and &T.outPl.size()=1$
6 // ---------------------------
7 template<&PNi,&Tri,&PNo,&Tro>
8 requires SimpleTrans(&PNi,&Tri),
9 SimpleTrans(&PNo,&Tro)

10 PetriNet Buff2 imports &PNi,&PNo{
11 Place Buffer {}
12 ArcPT (Buffer, &Tro);
13 ArcTP (&Tri, Buffer);
14 }
15 // ---------------------------
16 template<>
17 PetriNet TwoStateProc {
18 Place p1 {}
19 Place p2 {}
20 Transition t12 {}
21 Transition t21 {}
22 ...
23 }
24 // ---------------------------
25 TwoStateProc<> Producer;
26 TwoStateProc<> Consumer;
27 Buff2<Producer,Producer::t12,Consumer,Consumer::t12>
28 ProducerConsumer;

Listing 19 Defining and using model templates.

The second template, TwoStateProc in lines
16-23, defines a two-state process. In this case, the
template has no parameters and acts like a pattern
that can be instantiated by the modeller. In a realistic
scenario, we may like to pass as parameters the names of
the places, but currently MetaDepth does not support
template parameters of primitive data types, which is
left for future work.
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Lines 25-28 instantiate the templates. The result-
ing model ProducerConsumer is equivalent to the one
in Listing 3. However, the use of templates has raised
the abstraction level of the model, which is now more
concise, and we have reused the definition of the tem-
plate TwoStateProc. Altogether, model templates en-
able defining component and pattern libraries for domain
specific languages. Hence, a component designer would
identify or design generic, useful model components that
software engineers would be able to reuse and connect
to build their models.

7.1 Generic model templates

Model templates are a way to capitalize on knowledge
about useful domain-specific primitives, which are cap-
tured in terms of model fragments. They make use of
concepts at the model level to express requirements on
their interconnection interfaces. However, there is still
room for further abstraction, as model templates still
make use of types from specific meta-models. Hence, we
can define generic model templates, which are templates
that use the type variables from concepts. These tem-
plates express common patterns applicable to families
of meta-models. The scheme of this approach is shown
in Fig. 14.

Meta-level n

Concept C’ Meta-model
«binds»

«typed on»

Concept C Meta model

Concept

Template T
generic

template

Meta-level n-1

Template T

«instantiates»

template

definition

generic

«conforms to»

Model T-inst

generic

template

usage

Fig. 14 Scheme of generic model templates.

As a difference to Fig. 13, in Fig. 14 the generic model
template T is typed on a concept C ′, instead of on a
specific meta-model. In this way, once we bind the con-
cept C ′ to a specific meta-model, we can instantiate the
generic model template T . Moreover, generic model tem-
plates are normally defined over structural concepts, in
order to characterize as tightly as possible the repre-
sented family of meta-models.

Listing 20 shows the generalization of the two-state
process template shown in Listing 19. This time the tem-
plate is defined over the TokenHolder concept and
hence can be applied to the ProductionSystem meta-
model as well. This example shows that it is feasible to
define patterns for domain-specific languages in a meta-
model independent way.

1 template<>
2 requires TokenHolder(&M, &H, &P, &T, &tokens,
3 &inHolders, &outHolders)
4 &M TwoStateProc {
5 &H p1 {}
6 &H p2 {}
7 &P t12 {}
8 &P t21 {}
9 ...

10 }
11 // ---------------------------
12 bind TokenHolder(ProductionSystem,
13 ProductionSystem::Conveyor,
14 ProductionSystem::Machine,
15 ProductionSystem::Part,
16 ProductionSystem::Conveyor::parts,
17 ProductionSystem::Machine::inConveyors,
18 ProductionSystem::Machine::outConveyors)
19 TwoStateProc<> Producer;
20 TwoStateProc<> Consumer;
21 Buff2<Producer,Producer::t12,Consumer,Consumer::t12>
22 ProducerConsumer;

Listing 20 Defining and using generic model templates.

8 Meta-Model Templates and Semantic Mixin
Layers

Templates are not only useful to define generic models,
but can also be applied to meta-models in order to pro-
vide an extensible way of defining languages, similar to
mixin layers [44]. In our context, a mixin layer is a meta-
model containing a set of auxiliary elements, which are
needed to implement some functionality. These mixin el-
ements are added to a given meta-model by extending
the elements passed as parameters of the mixin. Here
we explore semantic mixin layers, which are meta-model
templates declaring elements needed to express the be-
haviour of meta-models. These templates are comple-
mented with behavioural specifications, defined over the
generic types of the mixin.

In order to define the semantics of a language, it is
often the case that its meta-model has to be extended
with auxiliary classes and elements needed for the simu-
lation. For example, when simulating an automaton, we
need a pointer to the current state and the sequence of
symbols to be parsed. When simulating an event system,
we need a list of the scheduled events ordered by their
simulation time. These extra elements are not part of the
language, but of the simulation infrastructure. If the lan-
guage for specifying the semantics is powerful enough, we
can use it to create the required simulation infrastruc-
ture. For instance, EOL provides data structures like
Collection or Map that can be used for that purpose.
However, some specification languages lack this expres-
sivity (e.g. graph transformation), so that in general, a
simulation infrastructure needs to be modelled and ren-
dered.

The working scheme of semantic mixins is shown in
Fig. 15. It shows a mixin layer template T that is used to
extend the meta-models of a semantic family character-
ized by concept C. Hence L(C) contains all meta-models
satisfying the concept requirements. The semantic mixin
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T extends any such meta-models with appropriate ex-
tra features by using an extension mechanism similar
to package merge [11,18]. However, instead of extend-
ing a particular meta-model in L(C), the mixin extends
any meta-model in L(C), chosen when instantiating the
mixin. Please notice that a mixin and its instantiation for
a particular meta-model belong to the same meta-level.
The mixin T has an associated behaviour, defined on the
generic types of the mixin and its associated concept.
This behaviour becomes available for any meta-model
to which the mixin is applied.

Meta-Model

&M

Template T
semantic

mixin layer

Concept C
(requirs. for

semantic family)

«defines»

Meta-Model

«requires»

«extends»

Meta-Model
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for T
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«instantiates»

A

Meta-Model
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definition

template

usage

Meta-level n

Meta-level n-1

Fig. 15 Working scheme of semantic mixin layers.

As an example, assume we want to define a simula-
tor for timed token-holder languages. These languages
follow a Token-Holder semantics, but transitions fire af-
ter a given delay. Hence, we can characterize these lan-
guages with the TimedProcessHolder hybrid concept
of Listing 18. The simulator needs storing a list of the
firings that are currently scheduled, together with the
transition and tokens involved in each firing. These ex-
tra elements are not part of the timed token-holder lan-
guage, but devices needed only for the simulation. Hence,
a separate mixin layer can incorporate these elements
into the language definition in a non-intrusive way.

Lines 1-19 in Listing 21 show the template imple-
menting the mixin layer. It declares the necessary infras-
tructure to simulate instances of meta-models that sat-
isfy the concept TimedProcessHolder, therefore the
template definition requires this concept. The template
defines a family of meta-models which extend any meta-
model &M satisfying concept TimedProcessHolder
with the machinery needed for simulation. In particular,
the template extends the received meta-model &M with
a node Event to store the events, and a singleton node
FEvtList to handle the event list (this is indicated with
the cardinality interval [1] in line 7). Moreover, the node
with role &P (process) is added a collection evts storing
the scheduled events associated to the transition.

1 template <&M,&H,&P>
2 requires TimedProcessHolder(&M,&H,&P)
3 Model TimedSched extends &M {
4 Node &P {

5 evts: Event[*];
6 }
7 Node FEvtList[1] {
8 first: Event[0..1];
9 time : double;

10 }
11 Node Event {
12 time: double;
13 next: Event[0..1];
14 proc: &P;
15 }
16 Edge ProcTm(&P.evts, Event.proc) {
17 t : double;
18 }
19 }
20 // ---------------------------
21 TimedSched<ProductionSystem,
22 ProductionSystem::Conveyor,
23 ProductionSystem::Machine> SimProdSys
24 requires "ProdSystemsOps.eol"

Listing 21 Semantic mixin layer adding infrastructure to
simulate concept TimedProcessHolder.

Now, assume we add a field delay to the Machine
node in Listing 8, and define the operations required
by the TimedProcessHolder concept. Then, the
meta-model ProductionSystem (together with
such operations) is a valid binding for the concept
TimedProcessHolder, and hence we can instantiate
the mixin layer for the meta-model in order to extend it
with the simulation infrastructure. The instantiation is
declared in lines 21-24 of Listing 21.

Behaviours associated to semantic mixin layers use
the generic types of the template. Listing 22 shows an
excerpt of the simulator associated to the TimedSched
mixin layer. The simulator uses a FEvtList object (line
3) to keep the current simulation time and the list of
scheduled events. The list of events is initialized with the
set of active transitions (line 5). The main simulation
loop (lines 7-11) advances the simulation time to the
time of the first event in the list, fires the transition
associated to the event, and schedules new events (this
latter is not shown in the listing).

1 @template(name=TimedSched)
2 operation main() {
3 var FEL := new FEvtList;
4 FEL.time := 0;
5 FEL.schedule( getEnabled() );
6 var finish: Boolean := false;
7 while (not finish) {
8 FEL.time:= FEL.first.time;
9 FEL.first.proc.fire();

10 ...
11 }
12 }

Listing 22 Simulator for the TimedSched mixin layer
(excerpt).

Associating the simulator to the mixin layer has the
advantage that the simulator can be reused with any
meta-model to which this mixin layer is applied (i.e. any
meta-model fulfilling the TimedProcessHolder con-
cept), like SimProdSys in Listing 21, hence obtaining
highly reusable simulator specifications.
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9 Further Examples

Next we provide further examples to illustrate the pre-
sented techniques and demonstrate their applicability.

9.1 Automata model templates

If we are interested in working with deterministic finite
state automata (DFSA), we can define them as shown
in Listing 23. We have opted for defining two separate
meta-models, one with the definition of the input alpha-
bet (containing the definition of symbols or events), and
the other one with the automaton itself. The id annota-
tion on the value field of Symbol (line 3) ensures that
each symbol has a different value. The DFSAmeta-model
imports the Input meta-model in line 7, and includes
two global constraints in lines 25-28 to ensure a unique
initial state and one or more final states. The State
node contains two local constraints (nonRepSymb and
allSymb) in lines 14-18 to ensure determinism.

1 Model Input {
2 Node Symbol {
3 value : String{id};
4 }
5 }
6

7 Model DFSA imports Input {
8 Node State {
9 name : String {id};

10 ins : State[*];
11 outs : State[*];
12 initial: boolean = false;
13 final : boolean = false;
14 noRepSymb: $self.Transitionouts.collect(t |
15 t.symbol).asSet().size()=
16 self.Transitionouts.size()$
17 allSymb: $Symbol.allInstances().size =
18 self.Transitionouts.size()$
19 }
20

21 Edge Transition(State.ins, State.outs) {
22 symbol : Symbol;
23 }
24

25 oneInitial : $State.allInstances().one(s |
26 s.initial=true)$
27 someFinal : $State.allInstances().exists(s |
28 s.final=true)$
29 }

Listing 23 Deterministic automata meta-model.

We can instantiate the DFSA meta-model to define
automata. For instance, Listing 24 shows an automaton
over the binary alphabet accepting binary words ending
in 1.

1 Input Binary {
2 Symbol Zero { value = "0"; }
3 Symbol One { value = "1"; }
4 }
5

6 DFSA Accept2nd imports Binary {
7 State Initial { name = "i"; initial = true; }
8 State Final { name = "f"; final = true; }
9

10 Transition t1(Initial,Initial) { symbol = Zero; }
11 Transition t2(Initial,Final) { symbol = One; }
12 Transition t3(Final,Initial) { symbol = Zero; }
13 Transition t4(Final,Final) { symbol = One; }
14 }

Listing 24 An automaton model.

However, one soon realizes that the Accept2nd
model is unnecessarily concrete, in the sense that the
same automaton would work with any alphabet with
two symbols. Thus, we decide to convert the automaton
into a template model that requires the input alphabet
to have exactly two symbols, which is specified by means
of a concept. Listing 25 shows the realization of this idea.
Lines 1-6 define a concept requiring an alphabet with
exactly two symbols, and lines 8-18 define a template
model over the concept. The template is a generalization
of the model in Listing 24. Then, the user of the generic
automaton can easily instantiate the template using dif-
ferent alphabets, as lines 25-35 show. This approach
provides additional flexibility, as it is easy to exchange
the use of the different symbols in the alphabet. For
example, the instantiation in lines 33-35 creates an au-
tomaton that accepts the zero-terminated binary words.
Please notice that the meta-model remains unchanged,
so that this template-based technique is non-intrusive.

1 concept alpha2symb (&I, &S1, &S2) {
2 Input &I {
3 Symbol &S1{}
4 Symbol &S2{}
5 }
6 } where $Symbol.allInstances().size()=2$
7

8 template<&I, &s1, &s2>
9 requires alpha2symb(&I,&s1,&s2)

10 DFSA Accept2nd imports &I {
11 State Initial { name = "i"; initial = true; }
12 State Final { name = "f"; final = true; }
13

14 Transition t1(Initial,Initial) { symbol = &s1; }
15 Transition t2(Initial,Final) { symbol = &s2; }
16 Transition t3(Final,Initial) { symbol = &s1; }
17 Transition t4(Final,Final) { symbol = &s2; }
18 }
19

20 Input AlphaBeta {
21 Symbol Alpha { value = "a"; }
22 Symbol Beta { value = "b"; }
23 }
24

25 Accept2nd<AlphaBeta,
26 AlphaBeta::Alpha,
27 AlphaBeta::Beta> ab;
28

29 Accept2nd<Binary,
30 Binary::Zero,
31 Binary::One> zeroOne;
32

33 Accept2nd<Binary,
34 Binary::One,
35 Binary::Zero> oneZero;

Listing 25 Turning the automaton into a template.

Altogether, this example shows the usefulness of con-
cepts in order to define model templates. Such model
templates enable the construction of libraries of reusable
model fragments.

9.2 Questionnaires and timed automata

In this section we demonstrate the incremental construc-
tion of meta-models, as well as the rapid definition of
their semantics and associated behaviour through con-
cepts and genericity.
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Assume we want to build questionnaires made of
questions with a number of answers, some of them being
correct and redirecting to a new question until the end of
the questionnaire is reached. A meta-model to describe
such questionnaires is shown in Listing 26. This meta-
model shares certain characteristics with the one for au-
tomata presented in previous section, as Questions
can be interpreted as states, and Answers as transi-
tions.

1 Model Questionnaire {
2 Node Quiz {
3 title : String;
4 start : Question;
5 }
6

7 Node Question {
8 text : String;
9 options : Answer[*];

10 }
11

12 Node Answer {
13 ident : String;
14 text : String;
15 correct : boolean = false;
16 target : Question;
17 }
18 }

Listing 26 Meta-model for questionnaires.

As previously stated, concepts allow the definition
of generic simulators and code generators, applicable
to instances of all meta-models to which we can bind
the concepts. This can be used for the rapid definition
of semantics for domain-specific languages, by defining
suitable concepts and associated behaviour for seman-
tic families. Up to now, we have defined concepts for
Token-Holder semantics, automata semantics, timed au-
tomata, queueing networks and event-scheduling seman-
tics. For example, Listing 27 shows a hybrid concept for
automata-like languages for which we have built a sim-
ulator. The concept demands the existence of two kinds
of node: states and events. The former must be equipped
with operations to check whether states are initial or fi-
nal, and to obtain its name and the target state given an
event. Events must define an operation to obtain their
identity, and another one to check whether two events
are the same.

1 concept StateTransition(&M, &State, &Event) {
2 Model &M {
3 Node &State{
4 operation isInitial() : boolean;
5 operation isFinal() : boolean;
6 operation getName() : String;
7 operation getNext(e : &Event) : &State;
8 }
9 Node &Event{

10 operation getId() : String;
11 operation equivs(e: &Event) : boolean;
12 }
13 }
14 }

Listing 27 Concept for automata semantics.

The previous concept can be easily bound to the
meta-models of Listings 23 and 26, once the concept op-
erations are defined for the meta-models. For the latter

meta-model, Question plays the role of State and
Answer of Event.

Many times, timed semantics can be expressed as an
extension of untimed semantics. For example, Listing 28
presents a concept expressing the commonalities of lan-
guages behaving like simple timed automata, which we
call automata with timeout. These are an extension of
normal automata with special transitions having a time-
out. The automaton is forced to take a timeout transi-
tion when it stays in the source state a number of time
steps equal to the specified timeout. Moreover, transi-
tion labels can be input or output, enabling the syn-
chronization of concurrent automata through the same
transitions. These automata are a simplification of the
classical timed automata [1]. In our case, we have built
the TimedStateTransition concept incrementally,
by extending concept StateTransition.

1 load "StateTransition"
2

3 concept TimedStateTransition(&M, &State, &Event)
4 extends StateTransition(&M, &State, &Event)
5 {
6 Model &M {
7 Node &State{
8 operation getMaxDelay() : Integer;
9 operation getTimeoutState() : &State;

10 }
11 Node &Event{
12 operation isInput() : boolean;
13 }
14 }
15 }

Listing 28 Concept for timed automata semantics.

In a similar way, we can define a meta-model tem-
plate like the one in Listing 29 to increment meta-models
conforming to the StateTransition concept with the
necessary timing elements. The template extends State
with a maximum time and a timeout state. For events,
it adds a flag indicating whether they are input or out-
put events, so that we can build networks of models
synchronized through events. Lines 15-20 show two in-
stantiations of the template with the Questionnaire
and DFSA meta-models. This permits designing ques-
tionnaires with a maximum time to respond each ques-
tion. If such time is consumed, the user is redirected con-
veniently to a different question. Moreover, we can use
the extended DFSA meta-model to describe user models
responding to the questionnaires. In particular, users will
produce answers (output events) which will get synchro-
nized with the answers that the questionnaire expects
(input events).

1 template <&M,&State,&Event>
2 requires StateTransition(&M, &State, &Event)
3

4 Model TimeExt extends &M {
5 Node &State {
6 maxTime : int = 0;
7 timeOut : &State[0..1];
8 }
9

10 Node &Event {
11 isInput : boolean = false;
12 }
13 }
14
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15 TimeExt <Questionnaire,
16 Questionnaire::Question,
17 Questionnaire::Answer> TimedQuiz;
18 TimeExt <DFSA,
19 DFSA::State,
20 DFSA::Symbol> TimeoutAutomata;

Listing 29 Meta-model template for timeout automata.

We must implement the operations of the
TimedStateTransition concept in order to bind
it with the TimedQuiz and TimeoutAutomata meta-
models in the previous listing. These operations can be
defined over the template, obtaining a static binding
as explained in Section 6.1. In this way, we can simu-
late both meta-models by using our generic simulator.
Alternatively, we can use a generic code generator de-
fined over the concept in order to produce code for
analysis tools, like UPPAAL [5]. This is a tool en-
abling the visual simulation of timed automata, as well
as its analysis using temporal logic. Listing 30 shows
an excerpt of the generic code generator which is in
charge of generating appropriate tags to position the
nodes of the automata. Being this generator defined
over the TimedStateTransition concept, we can
synthesize code from instances of both TimedQuiz and
TimeoutAutomata.

1 [%
2 @concept(name=TimedStateTransition,file=TST.mdepth)
3 %]
4 <?xml version="1.0" encoding="utf-8"?>
5 <!DOCTYPE nta PUBLIC ’-//Uppaal Team//...’
6 ’http://www.it.uu.se/...flat-1_1.dtd’>
7 <nta>
8 ...
9 [% var ident : Integer := 0;

10 var yPos : Integer := -166;
11 var initIdent : Integer := 0;
12 for (s in &State.allInstances()) {
13 yPos := yPos+ident*60; %]
14 <location id="id[%=ident%]" x="-224" y="-136">
15 <name x="-234" y="[%=yPos%]">Q[%=ident%]</name>
16 </location>
17 [% s.˜identif := ident; s.˜yPos := yPos;
18 if (s.isInitial()) { initIdent := ident; }
19 ident := ident+1;
20 } %]
21 ...
22 </nta>

Listing 30 Generic code generator for concept
TimedStateTransition.

Timed automata have compositional seman-
tics as we can build networks of automata that
synchronize by sending and receiving events. Our
TimedStateTransition concept permits compo-
sition without being tied to the specific meta-model
used for modelling. Hence, we can synthesize code from
a network of models built using the TimeQuiz meta-
model for the questionnaires and the TimeoutAutomata
meta-model for the user behaviour. Afterwards, we can
use our generic code generator to synthesize code for
UPPAAL and perform analysis. Fig. 16 shows a screen-
shot of UPPAAL being used to analyse a questionnaire
with a particular user model. We have used the analysis
capabilities of UPPAAL to check, for example, whether

a particular questionnaire is solvable with a given user
strategy.

Fig. 16 Analysis of a Quiz+User model using UPPAAL.

Altogether, this example shows how to incremen-
tally augment meta-models with additional elements,
e.g. incorporating them additional structure to ex-
press more sophisticated semantics. In particular, we
have seen that timing semantics can be incorporated
in this way to untimed formalisms. We have also
seen that concepts can be extended in a similar way
(e.g. the TimedStateTransition concept extends
StateTransition). The definition of generic be-
haviours and code generators allow their application to
families of meta-models, obtaining interoperability as
well.

10 Related Work

The use of templates in modelling is not new. They are
already present in the UML 2.0 specification [39], as well
as in approaches like Catalysis’ model frameworks [19]
and package templates, and the aspect-oriented meta-
modelling approach of [11]. Interestingly, while all of
them consider templates for meta-models or class dia-
grams, none consider concepts to express the require-
ments of type parameters.

The UML 2.0 proposes classifier (e.g. class, compo-
nent), package, collaboration and operation templates
which are provided with a list of formal parameters rep-
resenting classifiers, values or features (i.e. properties
and operations). A template binding specifies the sub-
stitution of actual parameters for the formal parameters
of the template, and has the same semantics as if the
contents of the template were copied into the bound el-
ement, substituting the formal template parameters by
the corresponding actual parameters in the binding [39].
Hence, UML lacks support to express requirements for
the formal parameters in a non-intrusive way, as sup-
ported by the notion of concept we have presented here.
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In the context of UML 2, concepts would be a valu-
able means to express the requirements that parameter
instantiations should fulfil in order for a template bind-
ing to be correct. Currently, this can be achieved only
by requiring that some formal parameter conforms to a
specific class, in a similar way as in Java, where a param-
eter may be required to implement a certain interface.
However, if the template has several parameters, it is of-
ten not sufficient to demand requirements for each one
of them in isolation, but for the set of parameters as a
whole. Notice also that the genericity provided by UML
is mainly directed to generic models, but our approach
also allows the definition of generic behaviours. Although
package templates were incorporated into the UML 2.0
specification, the MOF [40] does not consider genericity
at the meta-model or model level.

Catalysis’ model frameworks [19] are parameterized
packages that can be instantiated by name substitution.
Hence, they are similar to our meta-model templates.
The package templates of [11] are based on those of
Catalysis, and are used to define languages in a mod-
ular way. They are based on string substitution, as the
template parameters are strings that are substituted in
the template definition. This approach is realized in the
XMF tool [12].

Our work extends the mentioned approaches in sev-
eral ways. First, we can apply templates not only to
meta-models, but also to models, as seen in Section 7 (cf.
Listing 19). Actually, as our framework supports an ar-
bitrary number of meta-models through potency [14], we
could apply templates at any meta-level. Second, our ap-
proach is based on concepts, which helps in expressing re-
quirements on template parameters. In addition, we can
define behaviour for concepts and templates (in particu-
lar with semantic mixin layers), independently of meta-
models. Third, our approach provides a stronger support
for templates, as our template parameters are model ele-
ments whose requirements can be expressed by concepts.
This permits type checking at the template level. Finally,
whereas we consider the definition of generic behaviour,
this is missing in other works [11,19,39]. This paper also
extends our own previous work on adding genericity to
a model management framework [22,41], where we ex-
plored the use of structural concepts to define model
transformation operations, but we did not explore more
flexible forms of concepts like hybrid concepts or gener-
icity for models and meta-models.

Even though our work is strongly influenced by
the generic programming community, generic (meta-
)modelling has fundamental differences with generic pro-
gramming [25,29]. The first one refers to the level of
granularity, as generic programming deals with generic
classes or functions, whereas we consider generic (meta-
)models which include several modelling elements, more
similar to mixin layers. Second, while the purpose of pro-
gramming concepts is to identify whether a class defines
certain operations, structural concepts check structural

properties of models. Our hybrid concepts are similar to
declarations of Java interfaces, but where operations are
defined for a collection of classes.

With respect to the binding, generic programming
proposes either an automatic binding of concepts, or a
manual one through concept maps [29]. The latter al-
low an explicit mapping between concept and class op-
erations, and can include code for the required concept
operations. In [25], the authors propose concept-based
overloading by defining operations with same signature
in different concepts. Then, it is possible to define a fam-
ily of overloaded templates, each requiring a different
concept. In this way, the most specific implementation of
the required operation will be selected depending on the
input type provided. Instead, we propose realizations of
hybrid concepts by several structural ones. In this way,
the user of the generic behaviour will select the most
appropriate structural concept fitting his meta-model.
Finally, the generic programming community has pro-
posed the specification of axioms defining properties for
the concept operations, like commutativity or associativ-
ity. Compilers can use these properties for several pur-
poses, like testing or optimization [4]. We believe this
idea could also be brought to our hybrid concepts by
using a constraint language such as OCL to express the
properties.

Another non-intrusive way to reuse model man-
agement operations is by structural subtyping mech-
anisms [10,45]. Structural subtyping permits defining
generic behaviours over an arbitrary meta-model, and
applying them to any meta-model that is found to be
a subtype. The subtype-of relation between the meta-
models does not need to be declared as in nominal sub-
typing, but it is automatically inferred like in the Ker-
meta system [30]. This approach has been applied for
example to generic refactoring [35]. In contrast, our ap-
proach requires providing an explicit binding between
concepts (supertype) and meta-models (subtypes). This
enables a fine control of the part of the meta-model to
be bound to a concept, as several bindings may be pos-
sible. Hence, an explicit binding is preferred for small
concepts that might be bound in many different ways
to a meta-model (e.g. a concept used to calculate the
transitive closure of a relation would only contain one
class and one relation). Instead, Kermeta’s structural
subtyping frees the developer from specifying bindings,
but at the price of less control. This approach is more
adequate when the supertypes are “big” and there are
few ways in which a meta-model can be a subtype of
the supertype. In general, we believe that our notion of
concept and binding could be easily adapted for this ap-
proach. Thus, we will explore partial bindings and (semi-
)automatic completion mechanisms. We could also use
Kermeta’s approach to meta-model pruning [43] to au-
tomatically derive structural concepts given a concrete
operation that we want to make generic. Nonetheless,
note that concepts can be thought as representatives
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of (meta-)model types. Such explicit representation en-
ables their use for expressing requirements of mixins and
model template parameters, which is not possible with
structural subtyping.

Another set of related research are the (meta-)model
modularization approaches, like Reuseware [26]. In this
approach, the authors develop a language-independent
composition language, which can be used to define com-
position interfaces for models, in an intrusive way. While
Reuseware solves the modularization of models, our tem-
plates provide in addition an instantiation mechanism,
suitable to construct patterns and component libraries.
In addition, [26] does not consider generic behaviours
and lacks abstraction mechanisms like concepts.

Parameterized modules were proposed in algebraic
specification in the eighties [21]. A parameterized mod-
ule is usually represented with a morphism par : P → M
from the formal parameters to the module. This ap-
proach was updated in [50] in order to define param-
eterized MOF-based meta-models. While we will take as
inspiration these previous approaches to build a formal-
ization of our approach, in this paper we propose us-
ing concepts to restrict how the formal parameters can
be bound to the actual parameters in both mixins and
model templates.

Our approach also has some similarities with Aspect
Oriented Modelling (AOM) [31]. AOM focuses on mod-
ularizing and composing crosscutting concerns within
software models. These concerns are expressed using
template models, frequently class or sequence diagrams,
which have some type parameters. Some aspects have
pointcuts expressing conditions that enable the applica-
tion of the aspect (the advice). Hence, one could inter-
pret our model templates as aspects, where the template
parameters and the concept act like pointcuts, and the
body of the template acts like an advice. The application
of our approach for AOM is left for future work.

Finally, there are several tools supporting multiple
meta-levels, like DeepJava [34] and the approach of [2].
Forms of multi-level meta-modelling can be traced back
to knowledge-based systems like Telos [38] and deductive
object base managers like ConceptBase [28]. However,
none of those systems consider genericity explicitly.

11 Conclusions and Future Work

In this paper we have shown the benefits of bringing con-
cepts, templates and mixin layers into MDE. Concepts
allow expressing requirements of template parameters,
and by themselves permit defining behaviour indepen-
dently of meta-models, hence becoming more reusable.
Templates can be applied to models or meta-models and
promote extendibility, modularity and reusability. At the
model level, they are useful to define patterns and model
component libraries. At the meta-model level, mixin lay-
ers are especially useful to provide the necessary infras-
tructure to simulate and execute models. We have shown

how the MetaDepth tool [14] provides support for all
these elements, however the discussions in this paper are
general and applicable to other contexts and tools as
well.

We believe the semantics of many modelling lan-
guages can be classified using concepts. Hence, we plan
to continue defining concepts for other kinds of seman-
tics, like communication semantics or process-interaction
semantics. Moreover, the combination of concepts and
semantic mixin layers will provide support for the rapid
prototyping of language semantics.

We are currently exploring the potential opened by
genericity, for instance to build pattern libraries for
domain-specific languages through model templates, or
to define any kind of model management operation like
model-to-model transformations. We are also working
on a formalization of our approach to investigate bind-
ings enabling different degrees of type-safety for given
operations, potential issues with non-injective bindings,
the conditions under which template instantiation yields
conformance, as well as the use of genericity elements
with formal transformation languages like graph trans-
formation. With such a formalization, we aim at deriving
proof mechanisms for type safety similar to those in [45],
as well as the correctness of mixin and model template
instantiation and composition. We will also explore the
implications and usage patterns of genericity in a multi-
level meta-modelling setting with more than two meta-
levels, as well as the usefulness of our approach for AOM.

Regarding tool support, we are currently improving
the MetaDepth support for genericity, in particular to
allow primitive types as template parameters, the defini-
tion of axioms for hybrid concepts, the extension of sev-
eral meta-models by a mixin, and more flexible bindings
including partial bindings and their (semi-)automated
completion.
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