
Domain-Specific Textual Meta-Modelling
Languages for Model Driven Engineering

Juan de Lara and Esther Guerra

Universidad Autónoma de Madrid (Spain)

Abstract. Domain-specific modelling languages are normally defined
through general-purpose meta-modelling languages like the MOF. While
this is satisfactory for many Model-Driven Engineering (MDE) projects,
several researchers have identified the need for domain-specific meta-
modelling (DSMM) languages providing customised meta-modelling prim-
itives aimed at the definition of modelling languages in a specific domain,
as well as the construction of meta-model families.
In this paper, we discuss the potential of multi-level meta-modelling for
the systematic engineering of DSMM architectures. For this purpose,
we present: (i) several primitives and techniques to control the meta-
modelling facilities offered to the users of the DSMM languages, (ii) a
flexible approach to define textual concrete syntaxes for DSMM lan-
guages, (iii) extensions to model management languages enabling the
practical use of DSMM in MDE, and (iv) an implementation of these
ideas in the metaDepth tool.

Keywords: Model-Driven Engineering, Deep Languages, Domain-Specific
Meta-Modelling, Textual Concrete Syntax, Multi-Level Transformations

1 Introduction

Model-Driven Engineering (MDE) promotes an active use of models throughout
the software development. These models are sometimes defined using general-
purpose languages like the UML, but for restricted, well-known domains, it is
also frequent the use of Domain-Specific Modelling Languages (DSMLs).

In current MDE practice, DSMLs are built by the language designer us-
ing a meta-model defined with a general-purpose meta-modelling language, like
the MOF. This meta-model describes the instances that the users of the lan-
guage can build in the immediate meta-level below. Thus, DSMLs usually com-
prise two meta-levels: the definition of the DSML and its usage. More recently,
several researchers [9, 16] have pointed out the utility of using domain-specific
meta-modelling (DSMM) languages as a means to provide domain-specific meta-
modelling primitives to customize families of similar DSMLs, e.g., for expressing
traceability [16], variability [16] or to define domain-specific process modelling
notations [9] and DSML profiles [13]. In this case, the language spans three meta-
levels: definition of the DSMM language for a specific domain, definition of the
DSML by using the constructs provided by the DSMM language, and usage of

2

the DSML. Unfortunately, existing approaches to DSMM are generally based on
a two meta-level setting and the definition of ad-hoc “promotion” transforma-
tions between models and meta-models, which makes the adoption of DSMM
cumbersome in practice. Moreover, there is no general framework for defining
DSMM languages with integrated MDE support.

In this paper, we propose multi-level meta-modelling [5] as an underlying
framework for DSMM, and discuss mechanisms to facilitate its adoption in MDE
projects. Multi-level meta-modelling allows the definition of deep languages,
which can be instantiated in more than one meta-level. In this way, the users
of the language perform DSMM as, in each meta-level, the constructed models
are instances of the upper meta-level but also meta-models w.r.t. the meta-level
below. In our context, this means that a DSML is naturally defined as an in-
stance of a DSMM language, and at the same time, it acts as a meta-model for
lower meta-levels (i.e., it defines a language). Moreover, we provide: (a) means
to customize the meta-modelling features that will be offered to the users of the
DSMM languages, (b) a flexible way to define textual concrete syntaxes at every
meta-level, and (c) model management languages able to work in a multi-level
setting, enabling the use of DSMM in MDE projects (for space constraints we
just show the use of model transformations). The framework is supported by
MetaDepth [6], a multi-level meta-modelling tool supporting deep characteri-
zation through potency [5], and dual ontological/linguistic typing.
Paper Organization. Sec. 2 discusses related research, exposing motivations and
needs in the area. Sec. 3 applies multi-level meta-modelling to DSMM and iden-
tifies some challenges: how to customise the DSMLs in a DSMM framework
(Sec. 4), how to define a concrete syntax for the DSMLs (Sec. 5), and how to
manipulate models in a multi-level setting (Sec. 6). Finally, Sec. 7 concludes.

2 Related work

Several researchers have pointed out the benefits of using DSMM languages. For
example, the traceability modelling language [16] (TML) is a DSMM language
used to express the allowed traces and constraints between several meta-models.
Its rationale is that TML users do not need the full power of EMF or MOF
to construct trace meta-models, but they benefit from specific meta-modelling
primitives like Trace and TraceLink. Other DSMM languages are described
in [16] to express variability over DSMLs, and to extend DSMLs with inter-
faces for model reuse. However, no general framework for defining such DSMM
languages is proposed. Instead, they use two meta-levels and define ad-hoc “pro-
motion” transformations between models (e.g., a TML model) and meta-models
(the resulting trace meta-model). These transformations are a way to emulate
three meta-levels within two, hindering the construction of DSMM languages.

In [8], the authors present a language to declare component types with ports,
which can be instantiated choosing a number of port instances. This DSMM lan-
guage is defined in a two meta-level framework extended with capabilities to in-
stantiate the components, emulating the existence of two meta-levels within one.

3

The price to pay is that one has to manually encode support for the definition of
class/features/data types and their instantiation, the definition and evaluation
of constraints, and the emulation of inheritance within a single meta-level.

In [13], the UML profiling mechanism is adapted for EMF-based DSMLs. This
is another example of DSMM as users need a language to define new profiles and
apply them at the meta-level below. Again, a two meta-level setting forces the
use of workarounds. In this case, they emulate the existence of attribute instances
at the lowest meta-level by the run-time adaptation of the meta-model, injecting
new attribute types and classes.

Instead of emulating several meta-levels within two [8] or using artificial
workarounds [13, 16], we claim that a more natural way to define DSMM lan-
guages is the native use of multi-level meta-modelling, also known as deep meta-
modelling [6]. Previously, Jablonski et al. [9] used multiple levels to build domain-
specific process modelling notations. However, their approach is restricted to
meta-modelling, and does not consider the language concrete syntax or its ma-
nipulation through model management languages, hindering its use in MDE.

Here, we propose some mechanisms to handle these deficiencies based on
some multi-level meta-modelling techniques developed originally by Atkinson
and Kühne [3]. There are several multi-level meta-modelling frameworks [1, 2,
12]. For example, DeepJava [12] extends Java to allow multiple instantiations,
whereas the main concern in [1] is the efficient navigation between meta-levels.
In [2], the authors discuss the visualization of multi-level languages but do not
consider linguistic extensions or the integration with model management lan-
guages. All these frameworks either do not consider concrete syntaxes [1, 12] or
do not integrate model manipulation languages enabling their use for MDE [2].

Although there are many approaches to define textual concrete syntaxes for
DSMLs [7, 10], their definition for DSMM languages poses new challenges. For
instance, there is the need to define the concrete syntax for models several meta-
levels below, for which the concrete types that will be available in the models are
unknown in advance. Sometimes, it is also necessary to extend the predefined
concrete syntax for a particular DSML built using a DSMM language. This
enables a progressive refinement of concrete syntaxes at different meta-levels.

Altogether, our contribution is a comprehensive framework to define DSMM
language environments based on multi-level meta-modelling. Our approach cov-
ers the definition of textual concrete syntaxes, a fine grained customization of
the meta-modelling facilities offered to the DSMM language users, and model
management languages tailored to a multi-level setting.

3 Deep meta-modelling for domain-specific
meta-modelling

In DSMM, users are not given the full power of a general-purpose meta-modelling
language, but a more suitable meta-modelling language that contains primitives
of the domain, and that is restricted for a particular meta-modelling task.

4

VAT@1: double

price: double

Product
@2 Ecommerce model

VAT=8.0

Pen: Product

Stationer’s model @1

VAT=8.0

caliber: double

length: double

Nail: Product

Hardware’s model @1

Book:

Product

VAT=16.0

title: String

Publication:

Product

Magazine

: Product

Author

name: String

author

*

books

Bookshop’s model @1

price=5.0

parker: Pen

WHSmith model @0

price=0.1

caliber=0.1

length=10

n1: Nail

DoItBest model @0 Amazon model @0

KL: Book

title=“King Lear”

price=30.0

WS: Author

name=“William

Shakespeare”

author books

DSMM

language

definition

system 1 system 2 system 3

(a)

(b)

(c)

(f) (d)

(e)

(g)

DSMM

language

usage

=

DSML

definition

DSML

usage

Fig. 1. Definition of a DSMM language for e-commerce (a). Using the language with
increasing degrees of extension: no extension (b,c), property extensions (d,e), concept
extensions (f,g).

For instance, assume we need to model information systems for e-commerce
in various domains. For this purpose, we can build a specialized meta-modelling
language that facilitates the construction of DSMLs for each one of these do-
mains. An over-simplified definition of such a meta-modelling language and some
of its uses for different scenarios are shown in Fig. 1. Model (a) defines the DSMM
language, which is made of a single class Product. This language can be used
to define a DSML for a stationer system (model (b)), for which we just use the
primitives of the domain (e.g., we create an instance of Product called Pen).
Finally, this DSML can be used to define the items in a particular stationery
store (i.e., we can create instances of Pen, as done in model (c)).

In this way, the definition of a DSML spans three meta-levels: the Stationer
model is an instance of Ecommerce, and WHSmith is an instance of Stationer.
Therefore, it is natural to use a multi-level framework to support the definition
and usage of our DSMM language, as these frameworks natively support instan-
tiation across several meta-levels without recurring to artificial workarounds. In
a multi-level framework, elements retain both a type facet which allows their in-
stantiation in the next meta-level, and an instance facet as they are instances of
an element at the meta-level above. Thus, model elements become clabjects (from
the union of “class” and “object”) enabling a more uniform way of modelling [3].

DSMM languages normally comprise three meta-levels. To enforce this depth
in a multi-level framework, we can use deep characterization through the con-
cept of potency [3]. The potency is an integer number that can be attached to
models, clabjects, attributes and references. If an element is not explicitly given
a potency, it receives the one of its immediate container. The potency of an ele-
ment gets decremented at each meta-level, and when it reaches zero, the element

5

cannot be instantiated further. Thus, the definition of our DSMM language has
potency 2 (see model (a) in Fig. 1, its potency is indicated by ’@2’), it gets
instantiated into models with potency 1 (middle models), and the instances of
these have potency 0 and therefore cannot be instantiated in subsequent meta-
levels. In this way, the DSMM language user is effectively performing DSMM
because he builds models with potency 1, which are instantiated as models of
potency 0.

The potency is also a way for the deep characterization of properties, in order
to control the meta-level in which they can be assigned a value. For example, in
our DSMM language, all products will receive a price. Hence, Product declares
an attribute price with potency 2, so that it will receive a value two meta-levels
below (i.e., each pen has its own price). The potency of the attribute is not
explicit, but it is received from the enclosing model. In contrast, the VAT is the
same for all products of the same type, hence it has potency 1.

DSMM languages are used to build meta-models for related but different
domains. Hence, a particular domain may need to extend the meta-modelling
concepts offered by the DSMM language with new domain-specific properties.
For example, model (d) in Fig. 1 shows that, in the hardware domain, we need
to increase the attributes offered by Product. In particular, Nails need to de-
fine their caliber and length. These two attributes are specific for nails and
therefore cannot be included in the definition of Product as they are not general
for every domain. Similarly, we may also need to declare domain-specific con-
straints, e.g., stating that the caliber should be larger than 0.1. Finally, some
domains may need to make available new primitives to the users of the DSMLs.
For instance, in the bookshop domain, the manipulated products are Books,
which have exactly one Author (see model (f) in Fig. 1). The concept of Author
is not included in the DSMM language, and hence we need to include it in the
meta-model for bookshops. This is only possible if the DSMM language provides
facilities to define new clabjects, references and multiplicities. Moreover, one
may wish to group several products in an inheritance hierarchy. For example,
both Magazines and Books have a title and share the same VAT value.

The previous linguistic extensions can be supported by a multi-level frame-
work if we use a dual ontological/linguistic typing for the model elements. The
ontological typing is a relation within the domain, and refers to the type of which
an element is instance. For example, the ontological type of Pen is Product, and
the ontological type of parker is Pen. Hence, ontological meta-modelling is con-
cerned with describing the concepts in a certain domain and their properties [4].
All elements in the top-most model (model (a) in Fig. 1) and some elements in
the domain-specific meta-models (e.g., Author) may not have ontological type. In
contrast, all elements have a linguistic type, which refers to the meta-modelling
primitive used to create the element. For example, the linguistic type of Product,
Pen and parker is clabject, while the linguistic type of books is reference.

One can interpret the union of the three models in each column of Fig. 1 as
being conformant to a linguistic meta-model, as shown in Fig. 2(a) (the linguistic
meta-model is only partially shown). In our approach, a linguistic extension is

6

VAT: double

ProductType

price: double

ProductInstance

ClassType Instance

Feature Slot
ftype

type

ptype

*

*

*

*

* supers

* *

Type facet Instance facet

Explicit modelling of meta-modelling facilities

VAT= 8.0

Nail: ProductType

price= 0.1

n1: ProductInstance

caliber:

Feature

length:

Feature

value2

: Slot

value1:

Slot

(a) (b)

Clabject
* supers

Instance Type

potency: int

VAT@1: double

price: double

Product

VAT=8.0

caliber: double

length: double

Nail: Product

@1

price=0.1

caliber=0.1

length=10

n1: Nail

@0

type

*

*

@2

type

type

Linguistic meta-model

*

Feature

c
o
n
fo

rm
a
n
t
to

Fig. 2. Defining a DSMM language using: (a) 3 levels and dual typing, (b) 2 levels.

an element without ontological typing, like Author or the caliber attribute in
Nail. The dual ontological/linguistic typing is very convenient for DSMM as it
makes available standard meta-modelling facilities at each meta-level.

Alternatively, Fig. 2(b) shows the definition of our DSMM language using
only two meta-levels. This solution makes necessary to explicitly model the de-
sired meta-modelling facilities, and to manually encode the machinery to emu-
late built-in support for instantiation and constraint checking. Thus, one should
build mechanisms taking care of type conformance, data types, definition and
evaluation of constraints, and so on.

Altogether, deep meta-modelling facilitates the construction of DSMM lan-
guages. However, the following challenges remain:

– We need mechanisms to control the linguistic extensions offered by the
DSMM languages, as not any extension may be valid in any domain.

– To be usable in practice, we need to provide a suitable concrete syntax
for the DSMM languages and for the DSMLs defined with them. Ideally,
both syntaxes should be defined once together with the DSMM language
definition, and it should be possible to refine or extend them to take into
account the particularities of specific domains.

– To enable the integration of DSMM in MDE projects, we need appropriate
model management languages able to work in this multi-level setting.

These three challenges are tackled in the next three sections.

4 Customising the meta-modelling facilities

Designers need to control the way in which the designed DSMM languages will
be used and extended. For this purpose, we propose the use of tags to identify

7

the non-extendable language elements, and the use of constraints to ensure a
certain extensibility degree. We will illustrate both control mechanisms using
the textual syntax of the metaDepth [6] tool. For example, the listing shown in
Fig. 3 defines our DSMM language for e-commerce systems (lines 1–7), its usage
to define a stationer’s model (lines 8–10), and an instance of this (lines 12–14),
corresponding to models (a, b, c) in Fig. 1.

1 strict Model Ecommerce@2 {
2 strict Node Product {
3 VAT@1 : double;
4 price : double;
5 minPrice: $self.price > 0$
6 }
7 }

8 Ecommerce Stationer {
9 Product Pen { VAT = 8; }

10 }
11

12 Stationer WHSmith {
13 Pen parker { price = 5.0; }
14 }

Fig. 3. Definition and use of the DSMM language for e-commerce in MetaDepth

The top-model Ecommerce lacks ontological type and hence is declared using
the keyword Model (line 1). This model defines clabject Product using the key-
word Node (line 2). Potencies are specified using the “@” symbol. Constraints
can be defined using Java or the Epsilon Object Language (EOL), a variant
of OCL that permits side effects [11]. For example, the constraint minPrice in
line 5 demands a positive price for the products. It receives potency 2 from the
model, therefore it will be evaluated two meta-levels below. The model instan-
tiated in lines 8–10 has Ecommerce as ontological type, which is used instead of
the keyword Model.

By default, the meta-models built with a DSMM language can be extended
with new primitives (i.e., new clabjects), and any element in the meta-models
can be extended with new features. To fine tune the extensibility of a DSMM
language, our first proposal is a tagging control mechanism to identify the non-
extensible elements. In this way, if the model with the DSMM language definition
is tagged as strict, it will not be possible to add clabjects without an ontological
typing in the next meta-level. If a clabject is tagged strict, their instances are
forbidden to define new attributes, references or constraints. In the previous
listing, both the Ecommerce model and the Product node are strict. Thus, we
can use the DSMM language to build the stationer’s model in Fig. 1, but not
the hardware model (as Product instances cannot be extended) or the bookshop
model (as Author has no ontological type).

If an element is not tagged strict, then we may need to control its allowed
linguistic extensions. For example, we may like each Product instance at potency
1 to declare an attribute acting as identifier, which will receive a value at potency
0. Even though we could declare such a field at meta-level 2 with potency 2, here
we may wish to let the decision of the attribute name and type (e.g., String or
int) to the meta-level 1. For this purpose, we propose defining constraints that
can make use of facilities of the linguistic meta-model. Fig. 4 shows a constraint,
with potency 1, demanding the linguistic extension of all Product instances

8

with some attribute tagged as identifier. The method newFields belongs to the
API of metaDepth’s linguistic meta-model, and returns a collection with the
new attributes declared in a meta-level. The method isId checks if a field is
an identifier. As this constraint has potency 1, it will be evaluated at the next
meta-level, where the DSMM language is used.

1 Node Product {
2 ...
3 extid@1: $self.newFields(). exists(f | f.isId())$
4 }

Fig. 4. Constraint demanding a linguistic extension

Finally, as the next section shows, we can also control the allowed linguistic
extensions syntactically through the design of an appropriate concrete syntax.

5 Designing the concrete textual syntax

Even though deep meta-modelling enables DSMM, our goal is building DSMM
languages, and therefore we need to design a concrete syntax for them (in addi-
tion to their abstract syntax). In the previous section, we used the default textual
concrete syntax that metaDepth makes available to model uniformly at every
meta-level. However, this syntax usually leads to verbose model specifications,
while we may prefer a more compact, domain-specific representation. For exam-
ple, instead of creating instances of Product using Product Pen{VAT=8;}, we
may like a more concise syntax for product instantiation like Pen(8%).

DSMM model @2

DSML model @1

Model @0

Syntax

Templates @1

Syntax

Templates @2

Refining

Templates @1

defined on defines syntax for

Fig. 5. Defining the concrete syntax.

Should the designer only had to de-
fine the syntax of the DSMM language,
he may use existing tools for describ-
ing textual syntaxes like xText [15],
TCS [10] or ANTLR [14]. However, as
Fig. 5 illustrates, a multi-level architec-
ture poses some challenges that these
tools are not able to deal with, since the
designer has to provide a syntax for the
languages built with the DSMM lan-
guage as well. In this way, when defin-
ing a DSMM language, the designer has
to provide both the syntax of the mod-
els at meta-level 1 (i.e., of the domain-specific meta-models) and the syntax of
the models at level 0 (i.e., of the meta-model instances). For this purpose, we
assign to each concrete syntax definition a potency governing the meta-level at
which it is to be used. Thus, the syntax with potency 1 will be used in the next

9

meta-level, and the one with potency 2 will be used two meta-levels below. More-
over, it should be possible to refine the syntax initially defined for the models at
meta-level 0, in order to introduce domain-specific constructs and describe the
syntax of any linguistic extension.

Following this idea, we have created a template-based language to define tex-
tual concrete syntaxes in metaDepth. Using this language, the syntax of each
clabject is defined through a template, which has a potency attached, controlling
the meta-level at which the template will be applied. Another template declares
the syntax of the model itself. As an example, Fig. 6 shows to the left the defini-
tion of the concrete syntax for our example DSMM language, whereas the right
corresponds to the syntax for models at meta-level 0.

1 Syntax for Ecommerce [”.ecommerce mm”] {
2 template@1 TEcommerce for Model Ecommerce:
3 ”id ’{’ &TProduct∗ ’}’”
4 template@1 TProduct for Node Product:
5 ”id ’(’ #VAT ’%’ ’)’”
6 }

7 Syntax for Ecommerce [”.ecommerce”] {
8 template@2 DeepProds for Model Ecommerce:
9 ”typename id ’{’ &DeepProd∗ ’}’”

10 template@2 DeepProd for Node Product:
11 ”typename id ’(’ #price ’e’ ’)’”
12 }

Fig. 6. Defining the concrete syntax for models at levels 1 (left) and 0 (right)

The first line in the definition to the left declares the language to which
the syntax applies (the Ecommerce model) as well as the associated file exten-
sion (ecommerce mm). Its two templates have potency 1, therefore they corre-
spond to the syntax of the DSMM language (i.e., the templates will be used in
the next meta-level). In particular, lines 2–3 define the syntax of the instances
of the Ecommerce model, whereas lines 4–5 define the syntax of the clabject
Product. The keyword “id” stands for the identifier of an element (see lines 3
and 5), whereas the attributes of a clabject can be referenced by using the prefix
“#” (like VAT in line 5). Templates can refer to other templates, as in line 3,
where it is indicated that the instances of Ecommerce can contain zero or more
Product instances (“&TProduct*”). Using this textual syntax, we can specify
the Stationer model as Stationer{ Pen(8%) }.

The right of the same listing declares the syntax for the models at meta-level
0, which will be stored in a separate file with extension ecommerce. In this case,
all templates have potency 2. At this point, we do not know the model type
for which the syntax is defined, but we only know that it will be an indirect
instance of Ecommerce (line 8). To access the name of the concrete type we use
the keyword “typename”, which is interpreted by the parser to check that it is
an indirect instance of Ecommerce (line 9). The same applies to the definition of
templates for clabjects (lines 10–11). With this syntax we can write Stationer
WHSmith { Pen parker(5.0e) } to instantiate model Stationer.

Templates can include “semantic” actions (e.g., to initialize fields of the cre-
ated clabjects) and may have several syntactic expressions. For instance, we can
insert in line 12 of the previous listing ‘‘typename id’’ with ‘‘#price = 0’’

to permit defining products without a price, which gets initialized to 0.

10

Finally, similar to [7], we can use a single template to define the syntax
of several clabjects in the same inheritance hierarchy. Thus, if a clabject does
not have an associated template, it uses the template of its closest ancestor in
the inheritance hierarchy. A useful keyword in this case is “type”, which gets
substituted by the name of the clabject. For example, given a clabject “B”
inheriting from “A”, and a template attached to “A” with body ‘‘type id’’,
then writing “A a” creates an A instance, while typing “B b” creates a B instance.
As a difference with “typename”, “type” is used for direct types (i.e., at adjacent
meta-levels) expecting exactly A or B. In contrast, “typename” is used for indirect
types (i.e., at non adjacent meta-levels) and induces a checking that the name
typed in place of “typename” is an indirect instance of the clabject the template
is attached to.

5.1 Customising the meta-modelling facilities at the syntax level

In Section 4, we showed how to customise the extensibility of a DSMM lan-
guage at the abstract syntax by identifying strict (i.e., non-extensible) elements
and constraining the kind of allowed extensions. These design decisions should
be reflected in the concrete syntax of the DSMM language as well, to discard
forbidden extensions syntactically even before than semantically.

Our template language provides the following keywords to customise the al-
lowed extensions for a DSMM language at the concrete syntax: flingext to allow
declaring new fields with no ontological type, lingext to allow the addition of
new clabjects with no ontological type, constraint for declaring constraints,
and super to define new inheritance relations for clabjects. Moreover, two ad-
ditional keywords allow defining how these extensions should be instantiated at
level 0: flinginst for field instances and linginst for clabject instances.

For example, the listing shown to the left of Fig. 7 provides a concrete syntax
enabling the definition of new fields and constraints in the instances of Product,
due to the expression in line 6. Moreover, line 10 enables the instantiation of
those extra fields in indirect instances of Product. Note that, this time, the
concrete syntaxes of models at levels 0 and 1 are defined together, and have
associated the same file extension. The listing to the right of the figure shows
the definition of two models using this concrete syntax. The model Hardware
in lines 1–7 (in the column to the right of Fig. 7) is an instance of Ecommerce,
while the model in lines 9–11 is an instance of Hardware.

The listing to the left of Fig. 8 illustrates the use of lingext to allow the
definition of new clabjects at meta-level 1 (line 4), and the use of supers to
allow inheritance between instances of Product (line 7). The right of the same
figure uses this syntax to define model (f) in Fig. 1. In the listing, Magazine
(line 18) and Book (line 19) inherit from Publication, Book defines a new field
author (line 20), and there is a new clabject Author with no ontological type
(lines 22–24).

11

1 Syntax for Ecommerce [”.ecommerce”] {
2 template@1 TEcommerce for Model Ecommerce:
3 ”id ’{’ &TProduct∗ ’}’”
4 template@1 TProduct for Node Product:
5 ”id ’(’ #VAT ’%’ ’)’ ’{’
6 (flingext ’;’ | constraint)∗ ’}’ ”
7 template@2 DeepProds for Model Ecommerce:
8 ”typename id { &DeepProd∗ }”
9 template@2 DeepProd for Node Product:

10 ”typename id ’(’ #price ’e’ flinginst∗ ’)’ ”
11 }

1 Hardware {
2 Nail (8.0%){
3 caliber : double;
4 length : double;
5 bigger : $self.caliber>=0.1$
6 }
7 }
8

9 Hardware DoItBest {
10 Nail n1(0.1e caliber=0.1 length=10)
11 }

Fig. 7. Extensible textual syntax (left), and its use (right)

1 Syntax for Ecommerce [”.ecommerce”] {
2

3 template@1 TEcommerce for Model Ecommerce:
4 ”id ’{’ (&TProduct | lingext)∗ ’}’ ”
5

6 template@1 TProduct for Node Product:
7 ”id (’(’ #VAT ’%’ ’)’)? (’extends’ supers)?
8 (’;’ | ’{’ (flingext ’;’ | constraint)∗ ’}’) ”
9

10 ...
11 }
12

13

14 Bookshop {
15 Publication (16%){
16 title : String;
17 }
18 Magazine extends Publication;
19 Book extends Publication {
20 author : Author;
21 }
22 Node Author {
23 name : String;
24 }
25 }

Fig. 8. Syntax template allowing inheritance and new clabjects (left), and its use (right)

5.2 Refining the syntax of domain-specific modelling languages

Even if the DSMM language defines a syntax for the instances of the created
domain-specific meta-models, the builder of a particular domain-specific meta-
model may wish to design a special concrete textual syntax for some of the
instantiated clabjects or for the linguistic extensions (see Fig. 5).

For example, we can design a template especially for Nails, as Fig. 9 shows.
This template would be defined by the builder of the stationer’s domain-specific
meta-model at meta-level 1, and attached to it. The template refines the de-
fault one defined for products, so that the instances of Nail can be defined
using this more specialised syntax (in addition to the default one). Hence, we
can write n1(0.1e, 0.1, 0.1), in addition to Nail n1(0.1e caliber=0.1

length=0.1). In order to disable the instantiation of nails using the latter, more
general syntax, we should add the modifier overwrite to template TNail.

1 template@1 TNail for Node Nail:
2 ”id ’(’ #price ’e’, #caliber, #length ’)’ ”

Fig. 9. Refining the syntax template for nails at level 1

12

To conclude, as an implementation note, our template language for specify-
ing concrete syntaxes has been implemented using a meta-model, whereas its
concrete syntax has been specified with itself through bootstrapping. The parser
generation relies on ANTLR [14]. Moreover, metaDepth includes a registry of
parsers and automatically selects the appropriate parser according to the file
extension of the model to be loaded.

6 Model management for DSMM languages

To integrate DSMM languages in MDE, we need to provide suitable model man-
agement languages able to deal with multiple meta-levels. In metaDepth we
have adapted the Epsilon family of model management languages1 to work in a
multi-level setting. Hence, we can define model manipulation operations and con-
straints for DSMM languages using the Epsilon Object Language (EOL), code
generators working at several meta-levels using the Epsilon Generation Language
(EGL), and model-to-model transformations spanning several meta-levels using
the Epsilon Transformation Language (ETL). As the working scheme and chal-
lenges are similar in all cases, we will illustrate our solution only in the context
of model-to-model transformations.

As an example, assume we want to generate a graphical user interface that
allows the customers of an e-commerce system to select the products (at level
0) they want to buy. For this purpose, we need to transform the products to a
model representation of the graphical user interface, from which we can generate
code for different platforms like Java Swing or HTML. Based on this example, in
the following we illustrate the four typical transformation scenarios in a multi-
level setting: deep transformations, co-transformations, refining transformations
and reflective and linguistic transformations.
Deep transformations. Oftentimes, a transformation needs to be defined us-
ing the meta-model of the DSMM language, and applied to the instances of the
DSMLs built with it (i.e., at the bottom level). This scenario is depicted to the
right of Fig. 10. In this case, the transformation definition needs to use indirect
types because the direct types at level 1 are unknown when the transformation
is defined. For example, if we want to generate a graphical user interface for any
model of products at level 0, we would like to define the transformation only once
at meta-level 2 together with the DSMM language definition. The left of Fig. 10
shows the ETL deep transformation to achieve this goal, which will be executed
on indirect instances of the Ecommerce model. Rule Product2CheckButton cre-
ates a CheckButton for each indirect instance of Product (lines 3–8). The rule
is annotated with the top-level meta-model needed by the transformation (line
1), and the level at which the transformation is to be executed (line 2). The post
block (lines 10–15), which is executed when the transformation finishes, creates
the GroupBox for the checkbuttons and the container Window.
Co-transformations. In this kind of transformations, a model and its meta-
model need to be transformed at the same time, as the right of Fig. 11 illustrates.

1 see http://www.eclipse.org/epsilon/

13

1 @metamodel(name=Ecommerce,file=Ecommerce)
2 @model(potency=0)
3 rule Product2CheckButton
4 transform pr : Source!Product
5 to cb : Target!CheckButton {
6 cb.name := pr.name()+’ cbutton’;
7 cb.text := pr.name()+’(’+pr.price+’)’;
8 }
9

10 post {
11 var wd: Target!Window := new Target!Window();
12 var gb: Target!GroupBox := new Target!GroupBox();
13 wd.children := gb;
14 gb.children.addAll(Target!CheckButton.all());
15 }

Product

Nail

@2

@1

CheckBtn
@1Pr2ChBtn

@2

Nail

n1
@0

cb
@0

execution

Fig. 10. Deep transformation example (left) and scheme (right)

Here, the same transformation has to deal with direct and indirect instances of
the clabjects in the meta-model of the DSMM language; therefore, a mechanism
is needed to select the level at which the rules will be applied.

As an example, we may wish to generate a menu for each product type
defined at level 1, and checkbuttons for each product instance at level 0. For
this purpose, we can use the transformation in Fig. 11. Line 1 imports the
previous transformation which transforms the products at level 0. Then, rule
ProductType2Menu is executed for each Product at level 1. The level at which
the rule is executed is specified by the model alias, before the ‘!’ symbol (see line
4). Hence, we use Level0 for a model with potency 0 and Level1 for a model
with potency 1. We can also use the alias Source to refer to the source model
regardless its potency. This is the alias used in the listing of Fig. 10, where the
annotation in line 2 forces the execution of the transformation on models with
potency 0. Hence, our framework implicitly makes available all (meta-)∗-models
of the context model for the transformation.

Refining transformations. Sometimes, a deep transformation needs to be re-
fined for particular instances defined at level 1. This situation is depicted to
the right of Fig. 12. For example, if we decide to transform the instances of
Nail in a different way to consider the specific attributes that we added to it

1 import ’file:///Prod2GUI.etl’;
2

3 rule ProductType2Menu
4 transform pr : Level1!Product
5 to mn : Target!Menu {
6 mn.name := pr.name()+’ menu’;
7 mn.text := pr.name()+’(’+pr.VAT+’)’;
8 }

Product

Nail

n1

@0

CheckBtn

@1

cb
@0

execution

Menu

PrT2Menu

@1

Pr2ChBtn

@2

menu

@2

@1

Fig. 11. Co-transformation example (left) and scheme (right)

14

1 import ’file:///Prod2GUIDeep.etl’;
2

3 @metamodel(name=Ecommerce,file=Ecommerce.mdepth)
4 @model(potency=0)
5 rule Nail2CheckButton
6 transform pr : Source!Nail
7 to mn : Target!CheckButton
8 extends Product2CheckButton {
9 mn.name := pr.name()+’ check nail’;

10 mn.text := pr.name()+’(’+pr.price+’,
11 caliber=’+pr.caliber+’, length=’+pr.length+’)’;
12 }

Product

Nail

@1

CheckBtn
@1Pr2ChBtn

@2

@2

Nail2ChBtn
@1

Pin

c_p1: CheckBtn
@0

n1

@0

p1

c_p1: CheckBtn
text=“p1(5)”

execution
c_n1: CheckBtn

text=“n1(5, caliber=…”

Fig. 12. Refining transformation example (left) and scheme (right)

(caliber and length), we need to refine the transformation rule defined for
Products in Fig. 10. The refined rule is shown in Fig. 12. The rule extends
Product2CheckButton, but it is refined for type Nail. To support this kind of
transformations, we adapted ETL to allow extending a rule if the child rule trans-
forms a direct or indirect instance of the clabject type transformed by the parent
rule. The child rule will be applied whenever is possible, executing the body of
the rules of both parent and child. In our example, rule Nail2CheckButton will
be executed for instances of Nail, whereas rule Product2CheckButton will be
executed for indirect instances of Product that are not instances of Nail.

Reflective and linguistic transformations. When defining a deep transfor-
mation, we may want to account for the linguistic extensions that can be per-
formed at level 1. For this purpose, the transformation language needs reflective
capabilities to access any new declared field, and it has to be possible to perform
queries using linguistic types (i.e., Node, Edge and Model). The combination of
these two capabilities enables the construction of generic transformations, appli-
cable at any meta-level, and to elements of any ontological type. The working
scheme of this kind of transformations is shown to the right of Fig. 13.

The listing in Fig. 13 shows a transformation with one reflective rule and
another one defined on a linguistic type. Rule Product2CheckButton is reflective.
It gets executed for each indirect instance of Product at level 0, creating a
CheckButton. The rule takes into account that Product instances at level 1
may have been extended with new attributes. Thus, the rule iterates on the
new attributes in line 6 (returned by newFields), concatenating their name and
value. Technically, this reflection is possible because ETL is also reflective, being
able to call transparently methods of the metaDepth API.

In its turn, rule Node2Label uses linguistic typing, being applicable to all
Node instances (all elements) of potency 0 which are not indirect instances of
Product (forbidden by the guard in line 15). In this way, if we apply this trans-
formation to the Amazon model in Fig. 1, we obtain one CheckButton (the trans-
formation of the KL book by rule Product2CheckButton) and one Label (the
transformation of the WS author by Node2Label).

In the presented transformation examples, the target language has two meta-
levels. We also allow DSMM languages as target, and currently we only support

15

1 rule Product2CheckButton
2 transform pr : Level0!Product
3 to cb : Target!CheckButton {
4 cb.name := pr.name()+’ cbutton’;
5 cb.text := pr.name()+’(price=’+pr.price+’ ’;
6 for (f in pr.newFields())
7 cb.text := cb.text+f.name()+’= ’+
8 f.getValue()+’ ’;
9 cb.text := cb.text+’)’;

10 }
11

12 rule Node2Label
13 transform pr : Level0!Node
14 to cb : Target!Label {
15 guard: not pr.isKindOf(Level0!Product)
16 cb.name := pr.name()+’ label’;
17 cb.text := pr.name()+’(’;
18 for (f in pr.fields())
19 cb.text := cb.text+f.name()+’= ’+
20 f.getValue()+’ ’;
21 cb.text := cb.text+’)’;
22 }

Product

Book

@2

@1

CheckBtn
@1Pr2ChBtn

@2

Author

N
od

e
C

la
bj

ec
t

Node2Lbl
@2 Label

b1
@0

cb
@0

executiona1

C
la

bj
ec

t

lbl

Fig. 13. Linguistic transformation example (left) and scheme (right)

rules specifying the creation of direct instances of clabjects. One may consider
abstract rules specifying the creation of indirect instances, which would need to
be refined at level 1 stating which clabject to instantiate. This is left for future
work.

7 Discussion and future work

In this paper, we have presented our approach to define DSMM languages sup-
porting the flexible definition of a textual concrete syntax, a fine control of the
exposed meta-modelling facilities, and integration in MDE projects by making
available multi-level model management languages.

We also discussed the typical transformation scenarios in a multi-level setting
(deep transformations, co-transformations, refining transformations and linguis-
tic/reflective transformations) and illustrated their support using ETL. These
scenarios apply to other model management languages and tasks as well. In par-
ticular, they apply to the definition of textual syntaxes: at the top-level, we can
define syntactic templates for level 0 models (similar to deep transformations),
or for both level 0 and level 1 models (similar to co-transformations); we can add
refining templates at level 1 (like in refining transformations); and we can define
templates dealing with linguistic extensions (as in linguistic transformations).
Each model management language needs to provide appropriate constructs to
deal with each scenario, namely: the ability to select the meta-level at which
a certain operation is to be applied (e.g., potencies for rules and templates),
the ability to select clabjects of specific meta-levels (e.g., aliases Level0 and
Level1 in rules), the possibility to obtain indirect instances of clabjects (trans-

16

parently in our case), to access clabjects by their linguistic type (e.g., Node) and
to reflectively access linguistic extensions (e.g., method newFields).

We are currently using metaDepth to define DSMM languages in different
domains: component-based systems, web engineering and mobile devices. We
are also exploring the definition of visual syntaxes for DSMM languages, and
extending the integration of the tool with multi-level meta-modelling languages.
Acknowledgements. This work was funded by the Spanish Ministry of Econ-
omy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D pro-
gramme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).

References

1. T. Aschauer, G. Dauenhauer, and W. Pree. Representation and traversal of large
clabject models. In MoDELS’09, volume 5795 of LNCS, pages 17–31, 2009.

2. C. Atkinson, M. Gutheil, and B. Kennel. A flexible infrastructure for multilevel
language engineering. IEEE Trans. Soft. Eng., 35(6):742–755, 2009.

3. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul., 12(4):290–321, 2002.

4. C. Atkinson and T. Kühne. Model-driven development: A metamodeling founda-
tion. IEEE Software, 20(5):36–41, 2003.

5. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.
Software and System Modeling, 7(3):345–359, 2008.

6. J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In TOOLS’10,
volume 6141 of LNCS, pages 1–20. Springer, 2010.

7. J. Espinazo-Pagán, M. M. Tortosa, and J. G. Molina. Metamodel syntactic sheets:
An approach for defining textual concrete syntaxes. In ECMDA-FA’08, volume
5095 of LNCS, pages 185–199. Springer, 2008.

8. M. Herrmannsdörfer and B. Hummel. Library concepts for model reuse. Electron.
Notes Theor. Comput. Sci., 253:121–134, September 2010.

9. S. Jablonski, B. Volz, and S. Dornstauder. A meta modeling framework for domain
specific process management. In COMPSAC’08, pages 1011 –1016, 2008.

10. F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In GPCE. ACM, 2006.

11. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL).
In ECMDA-FA’06, volume 4066 of LNCS, pages 128–142. Springer, 2006.

12. T. Kühne and D. Schreiber. Can programming be liberated from the two-level
style? – Multi-level programming with DeepJava. In OOPSLA’07, pages 229–244,
2007.

13. P. Langer, K. Wieland, M. Wimmer, and J. Cabot. From UML profiles to EMF
profiles and beyond. In TOOLS, volume 6705 of LNCS, pages 52–67, 2011.

14. T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007. See also: http://www.antlr.org/.

15. xText. http://xtext.org.
16. S. Zschaler, D. S. Kolovos, N. Drivalos, R. F. Paige, and A. Rashid. Domain-specific

metamodelling languages for software language engineering. In SLE, volume 5969
of LNCS, pages 334–353, 2009.

